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Earth Scientists Use Fractals to Measure and
Predict Natural Disasters
Predicting the size, location, and timing of natural hazards is virtually
impossible, but now earth scientists are able to forecast hurricanes,
floods, earthquakes, volcanic eruptions, wildfires, and landslides using
fractals. A fractal is a mathematical formula of a pattern that repeats
over a wide range of size and time scales. These patterns are hidden
within more complex systems. A good example of a fractal is the
branching system of a river. Small tributaries join to form larger and
larger “branches” in the system, but each small piece of the system
closely resembles the branching pattern as a whole.

At the American Geophysical Union meeting held last month, Benoit
Mandelbrot, a professor of mathematical sciences at Yale University
who is considered to be the father of fractals, described how he has
been using fractals to find order within complex systems in nature, such
as the natural shape of a coastline. As a result of his research, earth sci-
entists are taking Mandelbrot’s fractal approach one step further and
are measuring past events and making probability forecasts about the
size, location, and timing of future natural disasters.

“By understanding the fractal order and scale embedded in pat-
terns of chaos, researchers found a deeper level of understanding that
can be used to predict natural hazards,” says Christopher Barton, a
research geologist at the United States Geological Survey. “They can
measure past events like a hurricane and then apply fractal mathemat-
ics to predict future hurricane events.”

Thanks to Dr. Mandelbrot, earth scientists like Dr. Barton have a
powerful, new tool to predict future chaotic events of nature.

SOURCE: American Institute of Physics, January 31, 2002. 

—See Chapter Project 1.

A LOOK BACK, A LOOK AHEAD This chapter

is in two parts: Polar Coordinates, Sections 8.1–8.3, and

Vectors, Sections 8.4–8.7. They are independent of each

other and may be covered in any order.

Sections 8.1–8.3: In Chapter 1 we introduced

rectangular coordinates and discussed the graph of

an equation in two variables involving x and y. In Sections

8.1 and 8.2, we introduce an alternative to rectangular

coordinates, polar coordinates, and discuss graphing

equations that involve polar coordinates. In Section 4.3,

we discussed raising a real number to a real power. In

Section 8.3 we extend this idea by raising a complex

number to a real power. As it turns out, polar coordinates

are useful for the discussion.

Sections 8.4–8.7: We have seen in many chapters that

often we are required to solve an equation to obtain a

solution to applied problems. In the last four sections of

this chapter, we develop the notion of a vector, and show

how they can be used to solve certain types of applied

problems, particularly in physics and engineering.

OUTLINE

8.1 Polar Coordinates

8.2 Polar Equations and Graphs

8.3 The Complex Plane; De Moivre’s Theorem

8.4 Vectors

8.5 The Dot Product

8.6 Vectors in Space

8.7 The Cross Product

Chapter Review Chapter Test Chapter Projects

Cumulative Review

(x, y)
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8.1 Polar Coordinates
PREPARING FOR THIS SECTION Before getting started, review the following:

• Rectangular Coordinates (Section 1.1, pp. 2–5)

• Definitions of the Sine and Cosine Functions (Section 5.2,
pp. 371–372)

• Inverse Tangent Function (Section 6.1, pp. 455–457)

• Completing the Square (Appendix, Section A.5, pp. 991–992)

Now work the ‘Are You Prepared?’ problems on page 579.

OBJECTIVES 1 Plot Points Using Polar Coordinates

2 Convert from Polar Coordinates to Rectangular Coordinates

3 Convert from Rectangular Coordinates to Polar Coordinates

So far, we have always used a system of rectangular coordinates to plot points in the
plane. Now we are ready to describe another system called polar coordinates. As we
shall soon see, in many instances polar coordinates offer certain advantages over
rectangular coordinates.

In a rectangular coordinate system, you will recall, a point in the plane is
represented by an ordered pair of numbers where x and y equal the signed
distance of the point from the y-axis and x-axis, respectively. In a polar coordinate
system, we select a point, called the pole, and then a ray with vertex at the pole,
called the polar axis. See Figure 1. Comparing the rectangular and polar coordinate
systems, we see that the origin in rectangular coordinates coincides with the pole in
polar coordinates, and the positive x-axis in rectangular coordinates coincides with
the polar axis in polar coordinates.

✓1 Plot Points Using Polar Coordinates
A point P in a polar coordinate system is represented by an ordered pair of numbers

If then r is the distance of the point from the pole; is an angle (in de-
grees or radians) formed by the polar axis and a ray from the pole through the point.
We call the ordered pair the polar coordinates of the point. See Figure 2.

As an example, suppose that the polar coordinates of a point P are 

We locate P by first drawing an angle of radian, placing its vertex at the pole and 

its initial side along the polar axis. Then we go out a distance of 2 units along the
terminal side of the angle to reach the point P. See Figure 3.

p

4

a2, 
p

4
b .

1r, u2
ur 7 0,1r, u2.

1x, y2,

O Pole
Polar axis

P � (r, �)
r

�

Figure 2

O Pole
Polar axis

P �  2,( )
2

�–
4

�–
4

Figure 3

N O W W O R K P R O B L E M 1 9 .
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O

P � (r, �), r � 0

�

⏐r⏐

Figure 4

O

�3, ( )2�––
3

2�––
3

Figure 5

3,    

5�––
3

5�––
3

O

(a)

( )
2,

O �–
4

�

�–
4

 �

(b)

( )

O (3, 0)

(c)

O

�2,

�–
4

�–
4

(d)

( )

Figure 6

Plotting Points Using Polar Coordinates

Plot the points with the following polar coordinates:

(a) (b) (c) (d)

Solution Figure 6 shows the points.

a -2, 
p

4
b13, 02a2, -  

p

4
ba3, 

5p
3
b

EXAMPLE 1

In using polar coordinates it is possible for the first entry r to be negative.
When this happens, instead of the point being on the terminal side of it is on the
ray from the pole extending in the direction opposite the terminal side of at a
distance units from the pole. See Figure 4 for an illustration.

For example, to plot the point we use the ray in the opposite

direction of and go out units along that ray. See Figure 5.ƒ -3 ƒ = 3
2p
3

a -3, 
2p
3
b ,

ƒr ƒ

u

u,
1r, u2,

�

N O W W O R K P R O B L E M S 1 1  A N D 2 7 .

Recall that an angle measured counterclockwise is positive and an angle
measured clockwise is negative. This convention has some interesting consequences
relating to polar coordinates. Let’s see what these consequences are.
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O

(a)

P �  2, �–
42

�–
4

( )

O

P �  2,
9�––
4

(b)

9�–––
42 ( ) P �  2, 7�–––

4

O

�

� 7�––
4

(c)

2 ( ) 2 �–
4

O

P �  �2,     

5�––
4

(d)

5�––
4( )

Figure 7

Finding Several Polar Coordinates of a Single Point

Consider again the point P with polar coordinates as shown in Figure 7(a).

Because and all have the same terminal side, we also could have

located this point P by using the polar coordinates or as shown 

in Figures 7(b) and (c). The point can also be represented by the polar

coordinates See Figure 7(d).a -2, 
5p
4
b .

a2, 
p

4
b

a2, -  
7p
4
b ,a2, 

9p
4
b

-  
7p
4

9p
4

,
p

4
,

a2, 
p

4
b ,

EXAMPLE 2

P �  3,

13�–––
6

13�–––
6

O

( )

Figure 9

P �  �3,
7�––
6 7�––

6

O

( )

Figure 10

P �  3, �
�11�–––

6 11�–––
6

O

( )

Figure 11

�

Finding Other Polar Coordinates of a Given Point

Plot the point P with polar coordinates and find other polar coordinates
of this same point for which:

(a) (b)

(c)

Solution The point is plotted in Figure 8.

(a) We add 1 revolution to the angle to get

See Figure 9.

(b) We add revolution to the angle and replace 3 by to get 

See Figure 10.

(c) We subtract from the angle to get 

See Figure 11.

P = a3, 
p

6
- 2pb = a3, -  

11p
6
b .

p

6
2p

P = a -3, 
p

6
+ pb = a -3, 

7p
6
b .

-3
p

6
1p radians21

2

P = a3, 
p

6
+ 2pb = a3, 

13p
6
b .

p

6
12p radians2

a3, 
p

6
b

r 7 0, -2p … u 6 0

r 6 0, 0 … u 6 2pr 7 0, 2p … u 6 4p

1r, u2 a3, 
p

6
b ,

EXAMPLE 3

�

N O W W O R K P R O B L E M 3 1 .
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SECTION 8.1 Polar Coordinates 575

These examples show a major difference between rectangular coordinates and
polar coordinates. In the former, each point has exactly one pair of rectangular
coordinates; in the latter, a point can have infinitely many pairs of polar coordinates.

Summary
A point with polar coordinates also can be represented by either of the following:

The polar coordinates of the pole are where can be any angle.

✓2 Convert from Polar Coordinates to Rectangular 
Coordinates
It is sometimes convenient and, indeed, necessary to be able to convert coordi-
nates or equations in rectangular form to polar form, and vice versa. To do
this, we recall that the origin in rectangular coordinates is the pole in polar coor-
dinates and that the positive x-axis in rectangular coordinates is the polar axis in
polar coordinates.

Theorem Conversion from Polar Coordinates to Rectangular Coordinates

If P is a point with polar coordinates the rectangular coordinates 
of P are given by

(1)

Proof Suppose that P has the polar coordinates We seek the rectangular
coordinates of P. Refer to Figure 12.

If then, regardless of the point P is the pole, for which the rectangular
coordinates are Formula (1) is valid for 

If the point P is on the terminal side of and 

Since

we have

If then the point can be represented as where
Since

we have

■x = r cos u y = r sin u

cos1p + u2 = -cos u =

x
-r
 sin1p + u2 = -sin u =

y

-r

-r 7 0.
1-r, p + u2,P = 1r, u2r 6 0,

x = r cos u y = r sin u

cos u =

x
r
 sin u =

y

r

r = d1O, P2 = 3x2
+ y2 .

u,r 7 0,
r = 0.10, 02.

u,r = 0,
1x, y2 1r, u2.

x = r cos u y = r sin u

1x, y21r, u2,

u10, u2,
1r, u + 2kp2 or 1-r, u + p + 2kp2, k any integer

1r, u2

P

O xx

r y

y

�

Figure 12
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x3   3

6,63
�–
6

�–
6

(a)

y

( )

4

x�2   2

�4, �
2   2

�–
4

�–
4

(b)

�

y( )

Figure 13
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Converting from Polar Coordinates to Rectangular Coordinates

Find the rectangular coordinates of the points with the following polar coordinates:

(a) (b)

Solution We use formula (1): and 

(a) Figure 13(a) shows plotted. Notice that lies in quadrant I of the

rectangular coordinate system. So, we expect both the x-coordinate and the 

y-coordinate to be positive. With and we have

The rectangular coordinates of the point are which lies in
quadrant I, as expected.

(b) Figure 13(b) shows plotted. Notice that lies in quadrant II

of the rectangular coordinate system.With and we have

The rectangular coordinates of the point are which
lies in quadrant II, as expected. �

Most calculators have the capability of converting from polar coordinates to rec-
tangular coordinates. Consult your owner’s manual for the proper key strokes. Since
in most cases this procedure is tedious, you will find that using formula (1) is faster.

Figure 14 verifies the result obtained in Example 4(a) using a TI-84 Plus. Note
that the calculator is in radian mode.

N O W W O R K P R O B L E M S 3 9  A N D 5 1 .

✓3 Convert from Rectangular Coordinates to Polar Coordinates
Converting from rectangular coordinates to polar coordinates is a little
more complicated. Notice that we begin each example by plotting the given
rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates

Find polar coordinates of a point whose rectangular coordinates are 

Solution See Figure 15.The point lies on the y-axis a distance of 3 units from
the origin (pole), so A ray with vertex at the pole through forms an angle 

with the polar axis. Polar coordinates for this point can be given by 
�

a3, 
p

2
b .u =

p

2

10, 32r = 3.
10, 32

10, 32.
EXAMPLE 5

1r, u21x, y2

A -222, 222 B ,a -4, -  
p

4
b

 y = r sin u = -4 sina -  
p

4
b = -4a -  

22
2
b = 222

 x = r cos u = -4 cosa -  
p

4
b = -4 #

22
2

= -222

u = -  
p

4
,r = -4

a-4, -  
p

4
ba -4, -  

p

4
b

A323, 3 B ,a6, 
p

6
b

 y = r sin u = 6 sin 
p

6
= 6 #

1
2

= 3

 x = r cos u = 6 cos 
p

6
= 6 #

23
2

= 323

u =

p

6
,r = 6

a6, 
p

6
ba6, 

p

6
b

y = r sin u.x = r cos u

a -4, -  
p

4
ba6, 

p

6
b

EXAMPLE 4

x

(x, y) � (0, 3)

3 �–
2

yFigure 15
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x

(r, θ) � (a, 0)
(x, y) � (a, 0)

a

y

(a)   (x, y) � (a, 0), a � 0

�–
2

�–
2

x

(r, �) �  a,   
(x, y) �  (0, a )   

a

y

(b)   (x, y) � (0, a), a � 0

( )

x

(r, �) � (a, �)
(x, y) � (�a, 0) �

a

y

(c)   (x, y) � ( �a, 0), a � 0

(r, �) �  a,

x

a

y

(d)   (x, y) � (0, �a), a � 0

(x, y) � (0, �a)
3�––

2

3�–––
2

( )

Figure 17

Most graphing calculators have the capability of converting from rectangular
coordinates to polar coordinates. Consult you owner’s manual for the proper
keystrokes. Figure 16 verifies the results obtained in Example 5 using a TI-84 Plus.
Note that the calculator is in radian mode.

Figure 17 shows polar coordinates of points that lie on either the x-axis or the 
y-axis. In each illustration, a 7 0.

Figure 16

N O W W O R K P R O B L E M 5 5 .

Converting from Rectangular Coordinates to Polar Coordinates

Find polar coordinates of a point whose rectangular coordinates are:

(a) (b)

Solution (a) See Figure 18(a). The distance r from the origin to the point is

We find by recalling that tan 

Since lies in quadrant IV, we know that  As a result,

A set of polar coordinates for this point is Other possible

representations include and 

(b) See Figure 18(b).The distance r from the origin to the point is

To find we use  Since the point 

lies in quadrant III and the inverse tangent function gives an angle in quadrant
I, we add to the result to obtain an angle in quadrant III.

A set of polar coordinates for this point is Other possible 

representations include and 
�

a2, -  
2p
3
b .a -2, 

p

3
b

a2, 
4p
3
b .

u = p + tan-1a -23
-1
b = p + tan-1 23 = p +

p

3
=

4p
3

p

A -1, -23 Bu = tan-1
 

y

x
, -
p

2
6 u 6

p

2
.u,

r = 31-122 + A -23 B2 = 24 = 2

A -1, -23 B
a -222, 

3p
4
b .a222, 

7p
4
b

a222, -  
p

4
b .

u = tan-1
 

y

x
= tan-1a -2

2
b = tan-1 1-12 = -

p

4

-

p

2
6 u 6 0.12, -22

u =

y

x
, so u = tan-1

 

y

x
, -
p

2
6 u 6

p

2
.u

r = 3x2
+ y2

= 41222 + 1-222 = 28 = 222

12, -22
A -1, -23 B12, -22

EXAMPLE 6

�1

1

�1

�2

2

(x, y) � (2, �2)
(a)

(b)

�
x

y

r

(x, y) � (�1, �   3)

�

x

r

y

Figure 18
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r �   x 2 � y 2

� � tan�1
(a)

y
–x

y
–x

y
–x

y
–x

r �   x 2 � y 2

� � � �  tan�1
(b) r �   x 2 � y 2

� � � � tan�1
(c) r �   x 2 � y 2

� � tan�1
(d)

�

x

r

y

(x, y)
�

x
r

y

(x, y) (x, y)

� x
r

y

�

x

r

y

(x, y)

Figure 19
Figure 19 shows how to find polar coordinates of a point that lies in a quadrant

when its rectangular coordinates are given.1x, y2

Based on the preceding discussion, we have the formulas

(2)

To use formula (2) effectively, follow these steps:

Steps for Converting from Rectangular to Polar Coordinates

STEP 1: Always plot the point first, as we did in Examples 5 and 6.
STEP 2: If or , use your illustration to find . See Figure 7.
STEP 3: If and , then .
STEP 4: To find first determine the quadrant that the point lies in.

Quadrant I: Quadrant II:

Quadrant III: Quadrant IV:

See Figure 19.

N O W W O R K P R O B L E M 5 9 .

Formulas (1) and (2) may also be used to transform equations from polar form
to rectangular form and vice-versa. Two common techniques for transforming an
equation from polar form to rectangular form are (1) multiplying both sides of the
equation by r and (2) squaring both sides of the equation.

Transforming an Equation from Polar to Rectangular Form

Transform the equation from polar coordinates to rectangular
coordinates, and identify the graph.

Solution If we multiply each side by r, it will be easier to apply formulas (1) and (2).

Multiply each side by r.

r2
= x2

+ y2; y = r sin u. x2
+ y2

= 4y

 r2
= 4r sin u

 r = 4 sin u

r = 4 sin u

EXAMPLE 7

u = tan-1
 

y

x
u = p + tan-1

 

y

x

u = p + tan-1
 

y

x
u = tan-1

 

y

x

u,
r = 2x2

+ y2y Z  0x Z  0
(r, u)y = 0x = 0

1x, y2

r2
= x2

+ y2 tan u =

y

x
 if x Z 0
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SECTION 8.1 Polar Coordinates 579

This is the equation of a circle; we proceed to complete the square to obtain the
standard form of the equation.

General form

Complete the square in y.

Factor

This is the standard form of the equation of a circle with center and radius 2. �

N O W W O R K P R O B L E M 7 5 .

Transforming an Equation from Rectangular to Polar Form

Transform the equation from rectangular coordinates to polar coordinates.

Solution We use formula (1): and

Factor out 

Double-angle Formula �

‘Are You Prepared?’
Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

8.1 Assess Your Understanding

 2r2 sin12u2 = 9

2r2. 2r212 sin u cos u2 = 9

 4r2 cos u sin u = 9

x = r cos u, y = r sin u 41r cos u21r sin u2 = 9

 4xy = 9

y = r cos u.x = r cos u

4xy = 9

EXAMPLE 8

10, 22
 x2

+ 1y - 222 = 4

 x2
+ 1y2

- 4y + 42 = 4

 x2
+ 1y2

- 4y2 = 0

 x2
+ y2

= 4y

1. Plot the point whose rectangular coordinates are 
(pp. 2–5)

2. To complete the square of add _____. (p. 991)x2
+ 6x,

13, -12. 3. If is a point on a unit circle and on the terminal
side of the angle then _____. (p. 372)

4. _____ (pp. 455–457)tan-11-12 =

sin u =u,
P = 1x, y2

Concepts and Vocabulary

5. In polar coordinates, the origin is called the _____ and the
positive x-axis is referred to as the _____ _____.

6. Another representation in polar coordinates for the point

is 

7. The polar coordinates are represented in rectan-

gular coordinates by (_____, _____).

a -2, 
p

6
b

a , 
4p
3
b .a2, 

p

3
b

8. True or False: The polar coordinates of a point are unique.

9. True or False: The rectangular coordinates of a point are
unique.

10. True or False: In the number r can be negative.1r, u2,

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 579



580 CHAPTER 8 Polar Coordinates; Vectors

11. 12. 13. 14.

15. 16. 17. 18.

In Problems 19–30, plot each point given in polar coordinates.

19. 20. 21. 22.

23. 24. 25. 26.

27. 28. 29. 30.

In Problems 31–38, plot each point given in polar coordinates, and find other polar coordinates of the point for which:
(a) (b) (c)

31. 32. 33. 34.

35. 36. 37. 38.

In Problems 39–54, the polar coordinates of a point are given. Find the rectangular coordinates of each point. Verify your results using a
graphing utility.

39. 40. 41. 42.

43. 44. 45. 46.

47. 48. 49. 50.

51. 52. 53. 54.

In Problems 55–66, the rectangular coordinates of a point are given. Find polar coordinates for each point. Verify your results using a
graphing utility.

55. 56. 57. 58.

59. 60. 61. 62.

63. 64. 65. 66.

In Problems 67–74, the letters x and y represent rectangular coordinates. Write each equation using polar coordinates 

67. 68. 69. 70.

71. 72. 73. 74.

In Problems 75–82, the letters r and represent polar coordinates. Write each equation using rectangular coordinates 

75. 76. 77. 78.

79. 80. 81. 82.

Applications and Extensions
83. Show that the formula for the distance d between two points and is

d = 3r1
2

+ r2
2

- 2r1 r2 cos1u2 - u12
P2 = 1r2 , u22P1 = 1r1 , u12

r =

3
3 - cos u

r =

4
1 - cos u

r = 4r = 2

r = sin u - cos ur2
= cos ur = sin u + 1r = cos u

1x, y2.u

y = -3x = 44x2
 y = 12xy = 1

y2
= 2xx2

= 4yx2
+ y2

= x2x2
+ 2y2

= 3

1r, u2.
1-2.3, 0.2218.3, 4.221-0.8, -2.1211.3, -2.12
A -2, -223 BA  23, 1 B1-3, 3211, -12
10, -221-1, 0210, 2213, 02

18.1, 5.2216.3, 3.821-3.1, 182°217.5, 110°2
1-3, -90°21-2, -180°2a -3, -  

3p
4
ba -1, -  

p

3
b

a -2, 
2p
3
ba -2, 

3p
4
b15, 300°216, 150°2

1-3, p21-2, 02a4, 
3p
2
ba3, 

p

2
b

a -2, -  
2p
3
ba -3, -  

p

4
b12, p2a1, 

p

2
b

1-3, 4p21-2, 3p2a4, 
3p
4
ba5, 

2p
3
b

r 7 0, 2p … u 6 4pr 6 0, 0 … u 6 2pr 7 0, -2p … u 6 0
1r, u2

a -3, -  
p

2
b1-2, -p2a -3, -  

3p
4
ba -1, -  

p

3
b

1-3, 120°21-2, 135°2a5, 
5p
3
ba6, 

p

6
b

1-3, p21-2, 0214, 270°213, 90°2

a2, 
11p

6
ba -2, 

7p
6
ba -2, 

5p
6
ba2, 

5p
6
b

a2, 
7p
6
ba -2, 

p

6
ba -2, -  

p

6
ba2, -  

11p
6
b

Skill Building

In Problems 11–18, match each point in polar coordinates with either A, B, C, or D on the graph.

π
6

C D

B A
2
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SECTION 8.2 Polar Equations and Graphs 581

84. In converting from polar coordinates to rectangular
coordinates, what formulas will you use?

85. Explain how you proceed to convert from rectangular
coordinates to polar coordinates.

86. Is the street system in your town based on a rectangular
coordinate system, a polar coordinate system, or some other
system? Explain.

‘Are You Prepared?’ Answers

1. 2. 9 3. 4. -  
p

4
y

x

y

�2

2

�2 2 4
(3,  �1)

8.2 Polar Equations and Graphs
PREPARING FOR THIS SECTION Before getting started, review the following:

• Symmetry; (Section 1.2, pp. 17–19)

• Circles (Section 1.5, pp. 44–49)

• Even–Odd Properties of Trigonometric Functions (Section
5.3, pp. 398–399)

• Difference Formulas for Sine and Cosine (Section 6.4,
pp. 473 and 476)

• Value of the Sine and Cosine Functions at Certain Angles
(Section 5.2, pp. 374–381)

Now work the ‘Are You Prepared?’ problems on page 597.

OBJECTIVES 1 Graph and Identify Polar Equations by Converting to Rectangular Equations

2 Graph Polar Equations Using a Graphing Utility

3 Test Polar Equations for Symmetry

4 Graph Polar Equations by Plotting Points

Just as a rectangular grid may be used to plot points given by rectangular coordinates,
as in Figure 20(a), we can use a grid consisting of concentric circles (with centers at the
pole) and rays (with vertices at the pole) to plot points given by polar coordinates, as
shown in Figure 20(b).We shall use such polar grids to graph polar equations.

x�4 �2 �1�3 42 31O

y

2

4

�4

1

�3

3

�2

A � (1, 2)
B � (�3, 1)

(a)   Rectangular grid

O r � 5
� � 0� � �

� �

� �

� �

� �

� �

� �

r � 3r � 1

�–
2

3�––
2

7�––
4

�–
4

3�––
4

5�––
4

P �  2,

Q �  4,( )

( )

(b)   Polar grid

�–
4

5�––
4

Figure 20

Discussion and Writing
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x

� � 0
� � �

�–
2

3�––
2

7�––
4

�–
4� �

� �

� �

� �

� �

� �

3�––
4

5�––
4

21 543O

yFigure 21
or x2

+ y2
= 9r = 3

An equation whose variables are polar coordinates is called a polar equation.
The graph of a polar equation consists of all points whose polar coordinates
satisfy the equation.

✓1 Graph and Identify Polar Equations by Converting
to Rectangular Equations
One method that we can use to graph a polar equation is to convert the equation to
rectangular coordinates. In the discussion that follows, represent the rectan-
gular coordinates of a point P, and represent polar coordinates of the point P.

Identifying and Graphing a Polar Equation By Hand (Circle)

Identify and graph the equation:

Solution We convert the polar equation to a rectangular equation.

Square both sides.

The graph of is a circle, with center at the pole and radius 3. See Figure 21.r = 3

r2
= x2

+ y2 x2
+ y2

= 9

 r2
= 9

 r = 3

r = 3

EXAMPLE 1

1r, u2 1x, y2

�

N O W W O R K P R O B L E M 1 3 .

Identifying and Graphing a Polar Equation By Hand (Line)

Identify and graph the equation:

Solution We convert the polar equation to a rectangular equation.

 y = x

tan u =

y
x

 
y

x
= 1

 tan u = tan 
p

4
= 1

 u =

p

4

u =

p

4

EXAMPLE 2
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x

� � 0
� � �

� ��–
2

� �3�––
2

� � 7�––
4

� � �–
4� � 3�––

4

� � 5�––
4

21 543O

y

�–
4

Figure 22

or y = xu =

p

4
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x

� � 0
� � �

� ��–
2

� � 3�––
2

� � 7�––
4

� � �–
4

� � 3�––
4

� � 5�––
4

5432O

y

1

Figure 23
or y = 2r sin u = 2

The graph of is a line passing through the pole making an angle of with the

polar axis. See Figure 22.

p

4
u =

p

4

�

N O W W O R K P R O B L E M 1 5 .

Identifying and Graphing a Polar Equation By Hand (Horizontal Line)

Identify and graph the equation:

Solution Since we can write the equation as

We conclude that the graph of is a horizontal line 2 units above the pole.
See Figure 23. �

✓2 Graph Polar Equations Using a Graphing Utility
A second method we can use to graph a polar equation is to graph the equation
using a graphing utility.

Most graphing utilities require the following steps to obtain the graph of an
equation:

Graphing a Polar Equation Using a Graphing Utility
STEP 1: Solve the equation for r in terms of 
STEP 2: Select the viewing window in POLar mode. In addition to setting Xmin,

Xmax, Xscl, and so forth, the viewing window in polar mode requires
setting minimum and maximum values for and an increment setting
for Finally, a square screen and radian measure should
be used.

STEP 3: Enter the expression involving that you found in Step 1. (Consult
your manual for the correct way to enter the expression.)

STEP 4: Press graph.

Graphing a Polar Equation Using a Graphing Utility

Use a graphing utility to graph the polar equation 

Solution STEP 1: We solve the equation for r in terms of 

 r =

2
sin u

 r sin u = 2

u.

r sin u = 2.

EXAMPLE 4

u

1ustep2.u

u

u.

r sin u = 2

y = 2

y = r sin u,

r sin u = 2

EXAMPLE 3
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584 CHAPTER 8 Polar Coordinates; Vectors

STEP 2: From the polar mode, select a square viewing window. We will use the one
given next.

determines the number of points the graphing utility will plot.

For example, if is then the graphing utility will evaluate r at 

and so forth, up to 

The smaller the more points the graphing utility will plot.
The student is encouraged to experiment with different values for 

and to see how the graph is affected.

STEP 3: Enter the expression after the prompt 

STEP 4: Graph.

The graph is shown in Figure 24. �

Identifying and Graphing a Polar Equation (Vertical Line)

Identify and graph the equation:

Solution Since we can write the equation as

We conclude that the graph of is a vertical line 3 units to the left of the
pole. Figure 25(a) shows the graph drawn by hand. Figure 25(b) shows the graph 

using a graphing utility with and ustep =

p

24
.umin = 0, umax = 2p,

r cos u = -3

x = -3

x = r cos u,

r cos u = -3

EXAMPLE 5

r = .
2

sin u

ustepumax,
umin,

ustep,

2p1umax2.u = 0 1umin2, p
24

, 
2p
24

, 
3p
24

,

p

24
,ustep

ustep

 ustep =

p

24
  Xscl = 1  Yscl = 1

 umax = 2p  Xmax = 9  Ymax = 6

 umin = 0  Xmin = -9  Ymin = -6

(a) (b)

�6

�9 9

6r � �3
cos �

x
O

y

4 52 � � 0
� � �

� �

31

�–
2

� � 3�––
2

� �7�––
4

� � �–
4� �3�––

4

� �5�––
4

Figure 25
or x = -3r cos u = -3

�6

�9 9

6

Figure 24

�

Based on Examples 3, 4, and 5, we are led to the following results. (The proofs
are left as exercises.)
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SECTION 8.2 Polar Equations and Graphs 585

Theorem Let a be a nonzero real number. Then the graph of the equation

is a horizontal line a units above the pole if and units below the pole
if 

The graph of the equation

is a vertical line a units to the right of the pole if and units to the left
of the pole if 

N O W W O R K P R O B L E M 1 9 .

Identifying and Graphing a Polar Equation (Circle)

Identify and graph the equation:

Solution To transform the equation to rectangular coordinates, we multiply each side by r.

Now we use the facts that and Then

Complete the square in y.

Factor.

This is the standard equation of a circle with center at in rectangular coordinates
and radius 2. Figure 26(a) shows the graph drawn by hand. Figure 26(b) shows the 

graph using a graphing utility with and ustep =

p

24
.umin = 0, umax = 2p,

10, 22
 x2

+ 1y - 222 = 4

 x2
+ 1y2

- 4y + 42 = 4

 x2
+ 1y2

- 4y2 = 0

 x2
+ y2

= 4y

y = r sin u.r2
= x2

+ y2

r2
= 4r sin u

r = 4 sin u

EXAMPLE 6

a 6 0.
ƒa ƒa 7 0

r cos u = a

a 6 0.
ƒa ƒa 7 0

r sin u = a

x
O

y

4 52 � = 0
� = �

� = 

31

�–
2

� = 3�––
2

� = 7�––
4

� = �–4� = 3�––
4

� = 5�––
4

(a)

0

(b)

�3 3

4
Figure 26

or x2
+ (y - 2)2

= 4r = 4 sin u

�
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x
O 4 52 � = 0

� = �
31

y

� = �–2

� = 3�––
2

� = 7�––
4

� = �–4� = 3�––
4

� = 5�––
4

(a)

�1

(b)

�2.5 0.5

1

Figure 27
or (x + 1)2

+ y2
= 1r = -2 cos u

Identifying and Graphing a Polar Equation (Circle)

Identify and graph the equation:

Solution We proceed as in Example 6.

Multiply both sides by r.

Complete the square in x.

Factor.

This is the standard equation of a circle with center at in rectangular coordi-
nates and radius 1. Figure 27(a) shows the graph drawn by hand. Figure 27(b) shows  

the graph using a graphing utility with and ustep =

p

24
.umin = 0, umax = 2p,

1-1, 02
 1x + 122 + y2

= 1

 1x2
+ 2x + 12 + y2

= 1

 x2
+ 2x + y2

= 0

r2
= x2

+ y2; x = r cos u x2
+ y2

= -2x

 r2
= -2r cos u

r = -2 cos u

EXAMPLE 7

�

Exploration
Using a square screen, graph and Do you see the pattern? Clear

the screen and graph and Do you see the pattern? Clear

the screen and graph and Do you see the pattern? Clear the

screen and graph and Do you see the pattern?

Based on Examples 6 and 7 and the preceding Exploration, we are led to the
following results. (The proofs are left as exercises.)

Theorem Let a be a positive real number. Then,

Equation Description

(a) Circle: radius a; center at in rectangular coordinates

(b) Circle: radius a; center at in rectangular coordinates

(c) Circle: radius a; center at in rectangular coordinates

(d) Circle: radius a; center at in rectangular coordinates

Each circle passes through the pole.

N O W W O R K P R O B L E M 2 1 .

1-a, 02r = -2a cos u

1a, 02r = 2a cos u

10, -a2r = -2a sin u

10, a2r = 2a sin u

r3 = -3 cos u.r1 = -cos u, r2 = -2 cos u,

r3 = 3 cos u.r1 = cos u, r2 = 2 cos u,

r3 = -3 sin u.r1 = -sin u, r2 = -2 sin u,

r3 = 3 sin u.r1 = sin u, r2 = 2 sin u,

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 586



SECTION 8.2 Polar Equations and Graphs 587

(a) Points symmetric with
respect to the polar axis

x

� � 0
� � �

� ��–
2

� � 3�––
2

� � 7�––
4

� � �–
4

� � 3�––
4

� � 5�––
4

21 543O

y

�

��

(r, �)

(r, ��)

�––
2

(b) Points symmetric with
respect to the line � �

x

� � 0
� � �

�–
2

3�––
2

7�––
4

�–
4

� � � �

� �

� �

� �
3�––
4

� � 5�––
4

21 543O

y

�

(r, �)

�

(r, � � �)

� � �

(c) Points symmetric with
respect to the pole

x

� � 0
� � �

� ��–
2

� � 3�––
2

� � 7�––
4

� � �–
4

� � 3�––
4

� � 5�––
4

21 543

y

O

�

(�r, �)

(r, �)

Figure 28

The method of converting a polar equation to an identifiable rectangular equa-
tion to obtain the graph is not always helpful, nor is it always necessary. Usually, we
set up a table that lists several points on the graph. By checking for symmetry, it may
be possible to reduce the number of points needed to draw the graph.

✓3 Test Polar Equations for Symmetry
In polar coordinates, the points and are symmetric with respect to the
polar axis (and to the x-axis). See Figure 28(a). The points and are

symmetric with respect to the line (the y-axis). See Figure 28(b). The points 

and are symmetric with respect to the pole (the origin). See Figure 28(c).1-r, u21r, u2
u =

p

2

1r, p - u21r, u21r, -u21r, u2

The following tests are a consequence of these observations.

Theorem Tests for Symmetry

Symmetry with Respect to the Polar Axis (x-Axis)

In a polar equation, replace by If an equivalent equation results,
the graph is symmetric with respect to the polar axis.

Symmetry with Respect to the Line (y-Axis)

In a polar equation, replace by If an equivalent equation results,

the graph is symmetric with respect to the line 

Symmetry with Respect to the Pole (Origin)

In a polar equation, replace r by If an equivalent equation results,
the graph is symmetric with respect to the pole.

The three tests for symmetry given here are sufficient conditions for symmetry,
but they are not necessary conditions. That is, an equation may fail these tests and 

still have a graph that is symmetric with respect to the polar axis, the line or 

the pole. For example, the graph of turns out to be symmetric with 

respect to the polar axis, the line and the pole, but all three tests given here 

fail. See also Problems 87, 88, and 89.

u =

p

2
,

r = sin12u2
u =

p

2
,

-r.

u =

p

2
.

p - u.u

U �
P

2

-u.u
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Exploration
Graph Clear the screen

and graph Clear the

screen and graph 

Do you see a pattern?

r1 = 1 + cos u.

r1 = 1 - cos u.

r1 = 1 + sin u.

588 CHAPTER 8 Polar Coordinates; Vectors

✓4 Graph Polar Equations by Plotting Points

Graphing a Polar Equation (Cardioid)

Graph the equation:

Solution We check for symmetry first.

Polar Axis: Replace by The result is

The test fails, so the graph may or may not be symmetric with respect to the
polar axis.

The Line Replace by The result is

The test is satisfied, so the graph is symmetric with respect to the line 

The Pole: Replace r by Then the result is so 
The test fails, so the graph may or may not be symmetric with respect to the pole.

Next, we identify points on the graph by assigning values to the angle and
calculating the corresponding values of r. Due to the symmetry with respect to the 

line we only need to assign values to from to as given in Table 1.

Now we plot the points from Table 1 and trace out the graph, beginning at 

the point and ending at the point Then we reflect this portion of 

the graph about the line (the y-axis) to obtain the complete graph.

Figure 29(a) shows the graph drawn by hand. Figure 29(b) shows the graph using a 

graphing utility with and ustep =

p

24
.umax = 2p,umin = 0,

u =

p

2

a0, 
p

2
b .a2, -  

p

2
b

1r, u2
p

2
,-  

p

2
uu =

p

2
,

u

r = -1 + sin u.-r = 1 - sin u,-r.

u =

p

2
.

 = 1 - 30 # cos u - 1-12 sin u4 = 1 - sin u

 r = 1 - sin1p - u2 = 1 - 1sin p cos u - cos p sin u2
p - u.uU �

P

2
 :

r = 1 - sin1-u2 = 1 + sin u

-u.u

r = 1 - sin u

EXAMPLE 8

Table 1

r � 1 � sin UU

0

1 - 1 = 0
p

2

1 -

23

2
L 0.13

p

3

1 -

1

2
=

1

2

p

6

1 - 0 = 1

1 - a -  
1

2
b =

3

2
-  
p

6

1 - a -  
23

2
b L 1.87-  

p

3

1 - (- 1) = 2-  
p

2

(a)

�2

(b)

�2.3 2.3

1

x

y

21
(1, 0)

(0,   )

(2,      )

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

�–
6�

�–
2�

(1.87,     )�–
3

�

3–
2

�–
6

�–
2

(  ,    )1–
2

(0.13,   )�–
3

(  ,      )

Figure 29

�

The curve in Figure 29 is an example of a cardioid (a heart-shaped curve).
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Cardioids are characterized by equations of the form

where The graph of a cardioid passes through the pole.

N O W W O R K P R O B L E M 4 3 .

Graphing a Polar Equation (Limaçon without Inner Loop)

Graph the equation:

Solution We check for symmetry first.

Polar Axis: Replace by The result is

The test is satisfied, so the graph is symmetric with respect to the polar axis.

The Line Replace by The result is

The test fails, so the graph may or may not be symmetric with respect to the 

line 

The Pole: Replace r by The test fails, so the graph may or may not be
symmetric with respect to the pole.

Next, we identify points on the graph by assigning values to the angle and
calculating the corresponding values of r. Due to the symmetry with respect to the
polar axis, we only need to assign values to from 0 to as given in Table 2.

Now we plot the points from Table 2 and trace out the graph, beginning at
the point and ending at the point Then we reflect this portion of the
graph about the polar axis (the x-axis) to obtain the complete graph. Figure 30(a)
shows the graph drawn by hand. Figure 30(b) shows the graph using a graphing 

utility with and ustep =

p

24
.umin = 0, umax = 2p,

11, p2.15, 02 1r, u2 p,u

u

-r.

u =

p

2
.

 = 3 - 2 cos u

 r = 3 + 2 cos1p - u2 = 3 + 21cos p cos u + sin p sin u2
p - u.uU �

P

2
 :

r = 3 + 2 cos1-u2 = 3 + 2 cos u

-u.u

r = 3 + 2 cos u

EXAMPLE 9

a 7 0.

 r = a11 - cos u2  r = a11 - sin u2
 r = a11 + cos u2  r = a11 + sin u2

Table 2

r � 3 � 2 cos UU

0

3 + 2(- 1) = 1p

3 + 2a -  
23

2
b L 1.27

5p

6

3 + 2a -  
1

2
b = 2

2p

3

3 + 2(0) = 3
p

2

3 + 2a1

2
b = 4

p

3

3 + 2a23

2
b L 4.73

p

6

3 + 2(1) = 5

x
O

y

42 � = 0
� = �

� = 

31

�–
2

� = 3�––
2

� = 7�––
4

� = �–4� = 3�––
4

� = 5�––
4

5

(5, 0)

(2,    ) (4.73,   )�–
6

(1.27,    )
(1, �)

5�––
6

2�––
3

(3,   )�–
2

(4,   )�–
3

(a)

�4

(b)

�4.5 7.5

4

Figure 30

Exploration
Graph Clear the

screen and graph 

Clear the screen and graph

Do you see a

pattern?

r1 = 3 - 2 sin u.

r1 = 3 + 2 sin u.

r1 = 3 - 2 cos u.

�
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The curve in Figure 30 is an example of a limaçon (the French word for snail)
without an inner loop.

Limaçons without an inner loop are characterized by equations of the form

where and The graph of a limaçon without an inner loop
does not pass through the pole.

N O W W O R K P R O B L E M 4 9 .

Graphing a Polar Equation (Limaçon with Inner Loop)

Graph the equation:

Solution First, we check for symmetry.

Polar Axis: Replace by The result is

The test is satisfied, so the graph is symmetric with respect to the polar axis.

The Line Replace by The result is

The test fails, so the graph may or may not be symmetric with respect to the 

line 

The Pole: Replace r by The test fails, so the graph may or may not be
symmetric with respect to the pole.

Next, we identify points on the graph of by assigning values to
the angle and calculating the corresponding values of r. Due to the symmetry with
respect to the polar axis, we only need to assign values to from 0 to as given
in Table 3.

Now we plot the points from Table 3, beginning at and ending at
See Figure 31(a). Finally, we reflect this portion of the graph about the

polar axis (the x-axis) to obtain the complete graph. See Figure 31(b). Figure 31(c)
shows the graph using a graphing utility with and 

ustep =

p

24
.

umax = 2p,umin = 0,

1-1, p2. 13, 021r, u2
p,u

u

r = 1 + 2 cos u

-r.

u =

p

2
.

 = 1 - 2 cos u

 r = 1 + 2 cos1p - u2 = 1 + 21cos p cos u + sin p sin u2
p - u.uU �

P

2
 :

r = 1 + 2 cos1-u2 = 1 + 2 cos u

-u.u

r = 1 + 2 cos u

EXAMPLE 10

a 7 b.a 7 0, b 7 0,

 r = a - b cos u  r = a - b sin u

 r = a + b cos u  r = a + b sin u

Table 3

r � 1 � 2 cos UU

0

1 + 2(- 1) = - 1p

1 + 2a -  
23

2
b L - 0.73

5p

6

1 + 2a -  
1

2
b = 0

2p

3

1 + 2(0) = 1
p

2

1 + 2a1

2
b = 2

p

3

1 + 2a23

2
b L 2.73

p

6

1 + 2(1) = 3
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�2

(c)

�2 4

2

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� = 3�––
4

� � 5�––
4

2 4

y

2,�–31,

(–1, �)

�–
2

�0.73,5�––
6

0,2�––
3

2.73,
(3, 0)

�–
6

(a)

( )

( )
( )

( ) ( )

(b)   r � 1 � 2 cos �

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

2 4

y

2,�–3
1,

(�1, �)

�–
2

�0.73,5�–
6

2.73,
(3, 0)

�–
6

( )

( )
( )

( )
0,2�––

3( )

Figure 31

�

The curve in Figure 31(b) or 31(c) is an example of a limaçon with an
inner loop.

Limaçons with an inner loop are characterized by equations of the form

where and The graph of a limaçon with an inner loop will
pass through the pole twice.

N O W W O R K P R O B L E M 5 1 .

Graphing a Polar Equation (Rose)

Graph the equation:

Solution We check for symmetry.

Polar Axis: If we replace by the result is

The test is satisfied, so the graph is symmetric with respect to the polar axis.

The Line If we replace by we obtain

The test is satisfied, so the graph is symmetric with respect to the line 

The Pole: Since the graph is symmetric with respect to both the polar axis and the

line it must be symmetric with respect to the pole.u =

p

2
,

u =

p

2
.

r = 2 cos321p - u24 = 2 cos12p - 2u2 = 2 cos12u2
p - u,uU �

P

2
 :

r = 2 cos321-u24 = 2 cos12u2
-u,u

r = 2 cos12u2
EXAMPLE 11

a 6 b.a 7 0, b 7 0,

 r = a - b cos u  r = a - b sin u

 r = a + b cos u  r = a + b sin u

Exploration
Graph Clear the

screen and graph 

Clear the screen and graph

Do you see a

pattern?

r1 = 1 - 2 sin u.

r1 = 1 + 2 sin u.

r1 = 1 - 2 cos u.
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592 CHAPTER 8 Polar Coordinates; Vectors

Next, we construct Table 4. Due to the symmetry with respect to the polar axis,

the line and the pole, we consider only values of from 0 to 

We plot and connect these points in Figure 32(a). Finally, because of symmetry,
we reflect this portion of the graph first about the polar axis (the x-axis) and then 

about the line (the y-axis) to obtain the complete graph. See Figure 32(b).

Figure 32(c) shows the graph using a graphing utility with 

and ustep =

p

24
.

umin = 0, umax = 2p,

u =

p

2

p

2
.uu =

p

2
,

(a)

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

21 54

y

3
�1,�–3

1, �–
6

0, �–
4 (2, 0)

( )
( )

( )

(b)   r � 2 cos (2�)

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4
� � 3�––

4

� � 5�––
4

54

y

3
(2, 0)

2

1,�–6( )

�1, �–3( )
�2, �–

2( )�2, �–
2( )

�2

(c)

�3 3

2

Figure 32

Table 4

r � 2 cos(2U)U

0

2(- 1) = - 2
p

2

2a -  
1

2
b = - 1

p

3

2(0) = 0
p

4

2a1

2
b = 1

p

6

2(1) = 2

�

Exploration
Graph clear the screen and graph How many petals did each of

these graphs have?

Clear the screen and graph, in order, each on a clear screen, 

and What do you notice about the number of petals?

The curve in Figure 32(b) or (c) is called a rose with four petals.

Rose curves are characterized by equations of the form

and have graphs that are rose shaped. If is even, the rose has 2n petals;
if is odd, the rose has n petals.

N O W W O R K P R O B L E M 5 5 .

Graphing a Polar Equation (Lemniscate)

Graph the equation: r2
= 4 sin12u2

EXAMPLE 12

n Z ;1
n Z 0

r = a cos1nu2, r = a sin1nu2, a Z 0

r1 = 2 cos17u2.
r1 = 2 cos13u2, r1 = 2 cos15u2,

r1 = 2 cos16u2.r1 = 2 cos14u2;
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Solution We leave it to you to verify that the graph is symmetric with respect to the pole.

Table 5 lists points on the graph for values of through Note that there 

are no points on the graph for (quadrant II), since for such 

values. The points from Table 5 where are plotted in Figure 33(a). The
remaining points on the graph may be obtained by using symmetry. Figure 33(b)
shows the final graph drawn by hand. Figure 33(c) shows the graph using a graphing 

utility with and ustep =

p

24
.umin = 0, umax = 2p,

r Ú 0

sin12u2 6 0
p

2
6 u 6 p

u =

p

2
.u = 0

Table 5

rr2 � 4 sin(2U)U

0 0

04(0) = 0
p

2

; 1.94a23

2
b = 223

p

3

; 24(1) = 4
p

4

; 1.94a23

2
b = 223

p

6

4(0) = 0

�2

(c)

�3 3

2

(a)

x

� = 0
� = �

� = �–2

� = 3�––
2

� = 7�––
4

� = �–4� = 3�––
4

� = 5�––
4

1 2

y

1.9, �–6

1.9, �–
3

2, �–
4

(
(

)
)

( ) 1.9,( )�–
6

(b)   r 2 = 4 sin (2�)

x

� = 0
� = �

� = �–2

� = 3�––
2

� = 7�––
4

� = �–4
� = 3�––

4

� = 5�––
4

1 2

y

( )1.9,

(0, 0)(0, 0)

�–
3 ( )2, �–

4

Figure 33

The curve in Figure 33(b) or (c) is an example of a lemniscate (from the Greek
word ribbon).

Lemniscates are characterized by equations of the form

where and have graphs that are propeller shaped.

N O W W O R K P R O B L E M 5 9 .

Graphing a Polar Equation (Spiral)

Graph the equation:

Solution The tests for symmetry with respect to the pole, the polar axis, and the line 

fail. Furthermore, there is no number for which so the graph does not pass
through the pole. We observe that r is positive for all r increases as increases,

as and as With the help of a calculator, we obtainu: q .r : qu: - q ,r : 0
uu,

r = 0,u

u =

p

2

r = eu>5
EXAMPLE 13

a Z 0,

r2
= a2 sin12u2 r2

= a2 cos12u2

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 593



594 CHAPTER 8 Polar Coordinates; Vectors

Table 6

r � eU/5U

0.39

0.53

0.73

0.85

0 1

1.17

1.37

1.87

2.57

3.512p

3p

2

p

p

2

p

4

-  
p

4

-  
p

2

-p

-  
3p

2

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4
� � 3�––

4

� � 5�––
4

4

y

2

1.17, �–4( )
(3.51, 2�)(1, 0)

1.37, �–
2(

2.57,

)

3�––
2( )

(1.87, �)

�3

(b)(a)

�3.5 5.5

3

Figure 34
r = eu>5

the values in Table 6. See Figure 34(a) for the graph drawn by hand. Figure 34(b)
shows the graph using a graphing utility with and 

ustep =

p

24
.

umin = -4p, umax = 3p,

�

The curve in Figure 34 is called a logarithmic spiral, since its equation may
be written as and it spirals infinitely both toward the pole and away
from it.

Classification of Polar Equations
The equations of some lines and circles in polar coordinates and their corre-
sponding equations in rectangular coordinates are given in Table 7. Also included
are the names and the graphs of a few of the more frequently encountered polar
equations.

u = 5 ln r

Table 7

Lines

Description Line passing through the pole Vertical line Horizontal line

making an angle with the

polar axis

Rectangular equation

Polar equation

Typical graph y

x

y

x

y

x
	

r sin u = br cos u = au = a

y = bx = ay = (tan a)x

a
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SECTION 8.2 Polar Equations and Graphs 595

Circles

Other Equations

Description Center at the pole, radius a Passing through the pole, Passing through the pole,

tangent to the line tangent to the polar axis,

center on the polar axis, center on the line 

radius a radius a

Rectangular equation

Polar equation

Typical graph

a

y

x
a

y

x

y

x
a

r = ; 2a sin u, a 7 0r = ; 2a cos u, a 7 0r = a, a 7 0

x2
+ y2

= ; 2ay, a 7 0x2
+ y2

= ; 2ax, a 7 0x2
+ y2

= a2, a 7 0

u =

p

2
 ,

u =

p

2
 ,

Name Cardioid Limaçon without inner loop Limaçon with inner loop

Polar equations

Typical graph

Name Lemniscate Rose with three petals Rose with four petals

Polar equations

Typical graph y

x

y

x

y

x

 r = a cos(2u), a 7 0 r = a cos(3u), a 7 0 r2
= a2 sin(2u), a 7 0

 r = a sin(2u), a 7 0 r = a sin(3u), a 7 0 r2
= a2 cos(2u), a 7 0

y

x

y

x

y

x

 r = a ; b sin u, 0 6 a 6 b r = a ; b sin u, 0 6 b 6 a r = a ; a sin u, a 7 0

 r = a ; b cos u, 0 6 a 6 b r = a ; b cos u, 0 6 b 6 a r = a ; a cos u, a 7 0

Sketching Quickly
If a polar equation involves only a sine (or cosine) function, you can quickly obtain
a sketch of its graph by making use of Table 7, periodicity, and a short table.

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 595



596 CHAPTER 8 Polar Coordinates; Vectors

Sketching the Graph of a Polar Equation Quickly by Hand

Graph the equation:

Solution We recognize the polar equation: Its graph is a cardioid. The period of is so
we form a table using compute r, plot the points and sketch the
graph of a cardioid as varies from 0 to See Table 8 and Figure 35.2p.u

1r, u2,0 … u … 2p,
2p,sin u

r = 2 + 2 sin u

EXAMPLE 14

Table 8

r � 2 � 2 sin UU

0

2 + 2(0) = 22p

2 + 2(- 1) = 0
3p

2

2 + 2(0) = 2p

2 + 2(1) = 4
p

2

2 + 2(0) = 2

x

� � 0
� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4
� � 3�––

4

� � 5�––
4

y

5432(2, �)
(2, 0)

1

3�––
2( )0,

�––
2( )4,

Figure 35

�

Calculus Comment
For those of you who are planning to study calculus, a comment about one
important role of polar equations is in order.

In rectangular coordinates, the equation whose graph is the unit
circle, is not the graph of a function. In fact, it requires two functions to obtain the
graph of the unit circle:

Upper semicircle Lower semicircle

In polar coordinates, the equation whose graph is also the unit circle, does
define a function. That is, for each choice of there is only one corresponding value
of r, that is, Since many problems in calculus require the use of functions, the
opportunity to express nonfunctions in rectangular coordinates as functions in polar
coordinates becomes extremely useful.

Note also that the vertical-line test for functions is valid only for equations in
rectangular coordinates.

r = 1.
u

r = 1,

y2 = -31 - x2y1 = 31 - x2

x2
+ y2

= 1,

Polar coordinates seem to have been

invented by Jakob Bernoulli (1654–1705) in

about 1691, although, as with most such

ideas, earlier traces of the notion exist.

Early users of calculus remained committed

to rectangular coordinates, and polar coor-

dinates did not become widely used until

the early 1800s. Even then, it was mostly

geometers who used them for describing odd curves. Finally, about

the mid-1800s, applied mathematicians realized the tremendous

simplification that polar coordinates make possible in the descrip-

tion of objects with circular or cylindrical symmetry. From then on

their use became widespread.

HISTORICAL FEATURE

Jakob Bernoulli

(1654–1705)
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‘Are You Prepared?’
Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

8.2 Assess Your Understanding

1. If the rectangular coordinates of a point are the
point symmetric to it with respect to the origin is _____.
(pp. 17–19)

2. The difference formula for cosine is _____.
(p. 473)

3. The standard equation of a circle with center at and
radius 3 is _____. (pp. 44–49)

1-2, 52
cos1a - b2 =

14, -62, 4. Is the sine function even, odd, or neither? (pp. 398–399)

5. _____. (pp. 380–381)

6. _____. (pp. 380–381)cos 
2p
3

=

sin 
5p
4

=

Concepts and Vocabulary
7. An equation whose variables are polar coordinates is called

a _____ _____.

8. Using polar coordinates the circle 
takes the form _____.

9. A polar equation is symmetric with respect to the pole if an
equivalent equation results when r is replaced by _____.

x2
+ y2

= 2x1r, u2,

10. True or False: The tests for symmetry in polar coordinates
are necessary, but not sufficient.

11. True or False: The graph of a cardioid never passes through
the pole.

12. True or False: All polar equations have a symmetric feature.

Skill Building
In Problems 13–28, transform each polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
Verify your graph using a graphing utility.

13. 14. 15. 16.

17. 18. 19. 20.

21. 22. 23. 24.

25. 26. 27. 28.

In Problems 29–36, match each of the graphs (A) through (H) to one of the following polar equations.

29. 30. 31. 32.

33. 34. 35. 36.

x
O

y

2 4 � � 0� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(D)

x
O

y

2 � � 0� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(C)

x
O

y

� � 0� � �

� � 

31

�–
2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(B)

x
O

y

2 � � 0� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(A)

r sin u = 2u =

3p
4

r = 2 sin ur = 1 + cos u

r cos u = 2r = 2 cos uu =

p

4
r = 2

r sec u = -4r csc u = -2r csc u = 8r sec u = 4

r = -4 cos ur = -4 sin ur = 2 sin ur = 2 cos u

r sin u = -2r cos u = -2r cos u = 4r sin u = 4

u = -  
p

4
u =

p

3
r = 2r = 4
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In Problems 37–42, match each of the graphs (A) through (F) to one of the following polar equations.

37. 38. 39.

40. 41. 42.

In Problems 43–66, identify and graph each polar equation. Verify your graph using a graphing utility.

43. 44. 45. 46.

47. 48. 49. 50.

51. 52. 53. 54.

55. 56. 57. 58.

59. 60. 61. 62.

63. 64. 65. 66.

Applications and Extensions
In Problems 67–70, the polar equation for each graph is either or Select the correct
equation and find the values of a and b.
67. 68.

x

y

� � 

� � 

� � 

� � � 
� � 0

� � � � 

� � 

20 4 6 8

3, 

(6, �) 

10

( )

5�––
4

7�––
4

3�––
4

3�––
2

�–
2

�–
2

�–
4

x

y

� � 

� � 

� � 

� � � 
� � 0

� � � � 

� � 

20 4 6 8

3, 

(6, 0) 

10

( )

5�––
4

7�––
4

3�––
2

3�––
4

�–
2

�–
2

�–
4

r = a + b sin u, a 7 0, b 7 0.r = a + b cos u

r = 4 cos13u2r = 1 - 3 cos ur = 3 + cos ur = 1 - cos u

r = 3ur = 2ur2
= sin12u2r2

= 9 cos12u2
r = 3 cos14u2r = 4 sin15u2r = 2 sin13u2r = 3 cos12u2
r = 2 + 4 cos ur = 2 - 3 cos ur = 1 - 2 sin ur = 1 + 2 sin u

r = 4 + 2 sin ur = 4 - 2 cos ur = 2 - cos ur = 2 + sin u

r = 2 - 2 cos ur = 3 - 3 sin ur = 1 + sin ur = 2 + 2 cos u

0
(F)

�2.3 2.3

3

�5
(E)

�7.5 7.5

5

�4
(D)

�6 6

4

�1
(C)

�3 3

3

�2
(B)

�1.5 4.5

2

�5
(A)

�7.5 7.5

5

r = 2 + sin ur cos u = 3r sin u = 3

r = 3 sin ur = 3 cos ur = 4

x
O

y

2 � � 0� � �

� � �–2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(H)

x
O

y

4 � � 0� � �

� � 

2

�–
2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(G)

x
O

y

� � 0� � �

� � 

31

�–
2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(F)

x
O

y

� � 0� � �

� � 

31

�–
2

� � 3�––
2

� � 7�––
4

� � �–4� � 3�––
4

� � 5�––
4

(E)

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 598



SECTION 8.2 Polar Equations and Graphs 599

69. 70.

In Problems 71–80, graph each polar equation. Verify your graph using a graphing utility.

71. (parabola) 72. (hyperbola)

73. (ellipse) 74. (parabola)

75. (spiral of Archimedes) 76. (reciprocal spiral)

77. (conchoid) 78. (cissoid)

79. (kappa curve) 80. r = cos 
u

2
r = tan u, -  

p

2
6 u 6

p

2

r = sin u tan ur = csc u - 2, 0 6 u 6 p

r =

3
u

r = u, u Ú 0

r =

1
1 - cos u

r =

1
3 - 2 cos u

r =

2
1 - 2 cos u

r =

2
1 - cos u

x

y

� � 

� � 

� � � 
� � 0

� � � � 

� � 

10 2 3 4

5, 

(1, 0) 
5

( )

5�––
4

7�––
4

3�––
2

3�––
4

�–
2

�–
2

� � �–4

x

y

� � 

� � 

� � 

� � � 
� � 0

� � � � 

� � 

10 2 3 4

5, 

(4, 0) 

5

( )

5�––
4

3�––
2

7�––
4

3�––
4

�–
2

�–
2

�–
4

Discussion and Writing
87. Explain why the following test for symmetry is valid:

Replace r by and by in a polar equation. If an
equivalent equation results, the graph is symmetric with 

respect to the line (y-axis).

(a) Show that the test on page 587 fails for yet
this new test works.

(b) Show that the test on page 587 works for yet
this new test fails.

r2
= sin u,

r2
= cos u,

u =

p

2

-uu-r
88. Develop a new test for symmetry with respect to the pole.

(a) Find a polar equation for which this new test fails, yet
the test on page 587 works.

(b) Find a polar equation for which the test on page 587
fails, yet the new test works.

89. Write down two different tests for symmetry with respect to
the polar axis. Find examples in which one test works and
the other fails. Which test do you prefer to use? Justify your
answer.

‘Are You Prepared?’ Answers
1. 2. 3. 4. odd 5. 6. -  

1
2

-  
22
2

1x + 222 + 1y - 522 = 9cos a cos b + sin a sin b1-4, 62

81. Show that the graph of the equation is a horizon-
tal line a units above the pole if and units below
the pole if a 6 0.

ƒa ƒa 7 0
r sin u = a 82. Show that the graph of the equation is a vertical

line a units to the right of the pole if and units to
the left of the pole if a 6 0.

ƒa ƒa 7 0
r cos u = a

83. Show that the graph of the equation is a
circle of radius a with center at in rectangular
coordinates.

10, a2
r = 2a sin u, a 7 0, 84. Show that the graph of the equation is

a circle of radius a with center at in rectangular
coordinates.

10, -a2
r = -2a sin u, a 7 0,

85. Show that the graph of the equation is
a circle of radius a with center at in rectangular
coordinates.

1a, 02
r = 2a cos u, a 7 0, 86. Show that the graph of the equation 

is a circle of radius a with center at in rectangular
coordinates.

1-a, 02
r = -2a cos u, a 7 0,
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Imaginary
axis

Real
axisx

z � x � yi

O

⏐z ⏐ �   x
2  � y

2

Figure 37

y

Imaginary
axis

Real
axisx
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O
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Complex plane

600 CHAPTER 8 Polar Coordinates; Vectors

8.3 The Complex Plane; De Moivre’s Theorem
PREPARING FOR THIS SECTION Before getting started, review the following:

• Complex Numbers (Appendix, Section A.6, pp. 1000–1005)

• Value of the Sine and Cosine Functions at Certain Angles
(Section 5.2, pp. 374–381)

• Sum and Difference Formulas for Sine and Cosine 
(Section 6.4, pp. 473 and 476)

Now work the ‘Are You Prepared?’ problems on page 606.

OBJECTIVES 1 Convert a Complex Number from Rectangular Form to Polar Form

2 Plot Points in the Complex Plane

3 Find Products and Quotients of Complex Numbers in Polar Form

4 Use De Moivre’s Theorem

5 Find Complex Roots

When we first introduced complex numbers, we were not prepared to give a
geometric interpretation of a complex number. Now we are ready. Although
we could give several interpretations, the one that follows is the easiest to
understand.

A complex number can be interpreted geometrically as the point
in the xy-plane. Each point in the plane corresponds to a complex number

and, conversely, each complex number corresponds to a point in the plane. We shall
refer to the collection of such points as the complex plane. The x-axis will be
referred to as the real axis, because any point that lies on the real axis is of the form

a real number. The y-axis is called the imaginary axis, because any
point that lies on it is of the form a pure imaginary number.
See Figure 36.

Let be a complex number. The magnitude or modulus of z,
denoted by is defined as the distance from the origin to the point 
That is,

(1)

See Figure 37 for an illustration.
This definition for is consistent with the definition for the absolute value of a

real number: If is real, then and

For this reason, the magnitude of z is sometimes called the absolute value of z.
Recall that if then its conjugate, denoted by is 

Because it follows from equation (1) that the magnitude of z can be
written as

(2)ƒz ƒ = 2zz

zz = x2
+ y2,

z = x - yi.z,z = x + yi

ƒz ƒ = 3x2
+ 02

= 3x2
= ƒx ƒ

z = x + 0iz = x + yi
ƒz ƒ

ƒz ƒ = 3x2
+ y2

1x, y2.ƒz ƒ ,
z = x + yi

z = 0 + yi = yi,
z = x + 0i = x,

1x, y2 z = x + yi
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O

�
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SECTION 8.3 The Complex Plane; De Moivre’s Theorem 601

✓1 Convert a Complex Number from Rectangular 
Form to Polar Form
When a complex number is written in the standard form we say that it
is in rectangular, or Cartesian, form because are the rectangular coordinates
of the corresponding point in the complex plane. Suppose that are the polar
coordinates of this point. Then

(3)

If and the complex number may be written in
polar form as

(4)

See Figure 38.
If is the polar form of a complex number, the angle 

is called the argument of z.

Also, because we have From equation (1) it follows that
the magnitude of is

✓2 Plot Points in the Complex Plane

Plotting a Point in the Complex Plane and Writing 
a Complex Number in Polar Form

Plot the point corresponding to in the complex plane, and write an
expression for z in polar form.

Solution The point corresponding to has the rectangular coordinates 

The point, located in quadrant IV, is plotted in Figure 39. Because and
it follows that

So

Then and so the polar form of is

�

N O W W O R K P R O B L E M 1 1 .

z = r1cos u + i sin u2 = 2acos 
11p

6
+ i sin 

11p
6
b

z = 23 - ir = 2,u =

11p
6

sin u =

y

r
=

-1
2

, cos u =

x
r

=

23
2

, 0 … u 6 2p

r = 3x2
+ y2

= 3A  23 B2 + 1-122 = 24 = 2

y = -1,
x = 23

A  23, -1 B .z = 23 - i

z = 23 - i

EXAMPLE 1

ƒz ƒ = r

z = r1cos u + i sin u2r = 3x2
+ y2 .r Ú 0,

0 … u 6 2p,
u,z = r1cos u + i sin u2

z = x + yi = 1r cos u2 + 1r sin u2i = r1cos u + i sin u2

z = x + yi0 … u 6 2p,r Ú 0

x = r cos u y = r sin u

1r, u21x, y2 z = x + yi,
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Imaginary
axis

Real
axis

2

�2

2

2

z � 2(cos 30° � i sin 30°)

O
30°

Figure 40

In Words
The magnitude of a complex
number z is r and its argument 
is , so when

the magnitude of the product
(quotient) of two complex
numbers equals the product
(quotient) of their magnitudes;
the argument of the product
(quotient) of two complex
numbers is determined by the
sum (difference) of their
arguments.

z � r (cos u � i sin u),
u
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Plotting a Point in the Complex Plane and Converting 
from Polar to Rectangular Form

Plot the point corresponding to in the complex plane,
and write an expression for z in rectangular form.

Solution To plot the complex number we plot the point whose
polar coordinates are as shown in Figure 40. In rectangular form,

�

N O W W O R K P R O B L E M 2 3 .

✓3 Find Products and Quotients of Complex Numbers 
in Polar Form
The polar form of a complex number provides an alternative method for finding
products and quotients of complex numbers.

Theorem Let and be two complex 
numbers. Then

(5)

If then

(6)

Proof We will prove formula (5). The proof of formula (6) is left as an exercise
(see Problem 66).

■

Let’s look at an example of how this theorem can be used.

Finding Products and Quotients of Complex Numbers 
in Polar Form

If and find the following
(leave your answers in polar form):

(a) zw (b)

Solution (a)

 = 151cos 120° + i sin 120°2
 = 13 # 523cos120° + 100°2 + i sin120° + 100°24

 zw = 331cos 20° + i sin 20°24351cos 100° + i sin 100°24

z
w

w = 51cos 100° + i sin 100°2,z = 31cos 20° + i sin 20°2

EXAMPLE 3

 = r1 r23cos1u1 + u22 + i sin1u1 + u224
 = r1 r231cos u1 cos u2 - sin u1 sin u22 + i1sin u1 cos u2 + cos u1 sin u224
 = r1 r231cos u1 + i sin u121cos u2 + i sin u224

 z1 z2 = 3r11cos u1 + i sin u1243r21cos u2 + i sin u224

z1

z2
=

r1

r2
 3cos1u1 - u22 + i sin1u1 - u224

z2 Z 0,

z1 z2 = r1 r23cos1u1 + u22 + i sin1u1 + u224

z2 = r21cos u2 + i sin u22z1 = r11cos u1 + i sin u12

z = 21cos 30° + i sin 30°2 = 2a23
2

+

1
2

 ib = 23 + i

1r, u2 = 12, 30°2,z = 21cos 30° + i sin 30°2,

z = 21cos 30° + i sin 30°2

EXAMPLE 2
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(b)

�

N O W W O R K P R O B L E M 3 3 .

✓4 Use De Moivre’s Theorem
De Moivre’s Theorem, stated by Abraham De Moivre (1667–1754) in 1730, but
already known to many people by 1710, is important for the following reason:
The fundamental processes of algebra are the four operations of addition, subtrac-
tion, multiplication, and division, together with powers and the extraction of roots.
De Moivre’s Theorem allows these latter fundamental algebraic operations to be
applied to complex numbers.

De Moivre’s Theorem, in its most basic form, is a formula for raising a complex
number z to the power n, where is a positive integer. Let’s see if we can guess
the form of the result.

Let be a complex number. Then, based on equation (5),
we have

Equation (5)

Equation (5)

Equation (5)

The pattern should now be clear.

Theorem De Moivre’s Theorem

If is a complex number, then

(7)

where is a positive integer.

We will not prove De Moivre’s Theorem because the proof requires
mathematical induction (which is not discussed until Section 11.4).

Let’s look at some examples.

n Ú 1

zn
= rn3cos1nu2 + i sin1nu24

z = r1cos u + i sin u2

   = r43cos14u2 + i sin14u24
   = 5r33cos13u2 + i sin13u2463r1cos u + i sin u24

 n = 4:  z4
= z3 # z

   = r33cos13u2 + i sin13u24
   = 5r23cos12u2 + i sin12u2463r1cos u + i sin u24

 n = 3:  z3
= z2 # z

 n = 2:  z2
= r23cos12u2 + i sin12u24

z = r1cos u + i sin u2
n Ú 1

Argument must lie between
0° and 360°. =

3
5
1cos 280° + i sin 280°2

 =

3
5

 3cos1-80°2 + i sin1-80°24

 =

3
5

 3cos120° - 100°2 + i sin120° - 100°24

 
z
w

=

31cos 20° + i sin 20°2
51cos 100° + i sin 100°2
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Figure 41

Using De Moivre’s Theorem

Write in the standard form 

Solution

�

N O W W O R K P R O B L E M 4 1 .

Using De Moivre’s Theorem

Write in the standard form a + bi.11 + i25
EXAMPLE 5

 = 8a1
2

+

23
2

 ib = 4 + 423i

 = 81cos 60° + i sin 60°2
 321cos 20° + i sin 20°243 = 233cos13 # 20°2 + i sin13 # 20°24

a + bi.321cos 20° + i sin 20°243
EXAMPLE 4

✓5 Find Complex Roots
Let be a given complex number, and let denote a positive integer.
Any complex number z that satisfies the equation

is called a complex nth root of In keeping with previous usage, if the
solutions of the equation are called complex square roots of and if 
the solutions of the equation are called complex cube roots of w.z3

= w
n = 3,w,z2

= w
n = 2,w.

zn
= w

n Ú 2w

Algebraic Solution

To apply De Moivre’s Theorem, we must first write the complex number 

in polar form. Since the magnitude of is we
begin by writing

Now

�
 = 422 c -  

1

22
+ a -  

1

22
b i d = -4 - 4i

 = 422 acos 
5p
4

+ i sin 
5p
4
b

 = A  22 B5 ccosa5 #
p

4
b + i sina5 #

p

4
b d

 11 + i25 = c  22 acos 
p

4
+ i sin 

p

4
b d5

1 + i = 22 a 1

22
+

1

22
 ib = 22 acos 

p

4
+ i sin 

p

4
b

312
+ 12

= 22,1 + i

Graphing Solution

Using a TI-84 Plus graphing calculator, we
obtain the solution shown in Figure 41.

�
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Theorem Finding Complex Roots

Let be a complex number and let be an integer.
If there are n distinct complex roots of given by the formula

(8)

where 

Proof (Outline) We will not prove this result in its entirety. Instead, we shall
show only that each in equation (8) satisfies the equation proving that
each is a complex nth root of 

De Moivre’s Theorem

Simplify.

Periodic Property

So, each is a complex nth root of To complete the
proof, we would need to show that each is, in fact, distinct and
that there are no complex nth roots of other than those given by equation (8). ■

Finding Complex Cube Roots

Find the complex cube roots of Leave your answers in polar form, with
the argument in degrees.

Solution First, we express in polar form using degrees.

So and The three complex cube roots of

are

So

�

WARNING Most graphing utilities will only provide the answer to the calculation

The following paragraph explains how to obtain and from 
■

z0 .z2z1A - 1 + 23i B ¿ a 1
3
b .

z0

 z2 = 23 2 3cos140° + 120° # 22 + i sin140° + 120° # 224 = 23 2 1cos 280° + i sin 280°2
 z1 = 23 2 3cos140° + 120° # 12 + i sin140° + 120° # 124 = 23 2 1cos 160° + i sin 160°2
 z0 = 23 2 3cos140° + 120° # 02 + i sin140° + 120° # 024 = 23 2 1cos 40° + i sin 40°2

 = 23 2 3cos140° + 120°k2 + i sin140° + 120°k24, k = 0, 1, 2

 zk = 23 2 ccosa120°
3

+

360°k

3
b + i sina120°

3
+

360°k

3
b d , k = 0, 1, 2

-1 + 23i = 21cos 120° + i sin 120°2
u0 = 120°.r = 2

-1 + 23i = 2a -  
1
2

+

23
2

ib = 21cos 120° + i sin 120°2
-1 + 23i

-1 + 23i .

EXAMPLE 6

w
zk , k = 0, 1, Á , n - 1,

w.zk , k = 0, 1, Á , n - 1,

 = r1cos u0 + i sin u02 = w

 = r3cos1u0 + 2kp2 + i sin1u0 + 2kp24
 = 1 1n r2nb cosBn¢ u0

n
+

2kp
n
≤ R + i sinBn¢ u0

n
+

2kp
n
≤ R r

 zn
k = b  1n rBcos¢ u0

n
+

2kp
n
≤ + i sin¢ u0

n
+

2kp
n
≤ R rn

w.zk

zk
n

= w,zk

k = 0, 1, 2, Á , n - 1.

zk = 1n rBcos¢ u0

n
+

2kp
n
≤ + i sin¢ u0

n
+

2kp
n
≤ R

w,w Z 0,
n Ú 2w = r1cos u0 + i sin u02
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Imaginary
axis

Real
axis1�1�2

1

�1

�2

2

2

z0 �  3 2(cos 40° � i sin 40°)

O

40°
120°

120°120°

 3 2)2x2 � y2 � (

z1 �  3 2(cos 160° � i sin 160°)

z2 �  3 2(cos 280° � i sin 280°)

Figure 42

1. The conjugate of is _____. (pp. 1000–1002)

2. The sum formula for sine is _____. (p. 476)sin1a + b2 =

-4 - 3i 3. The sum formula for cosine is _____. (p. 473)

4. _____; _____. (pp. 380–381)cos 240° =sin 120° =

cos1a + b2 =

Notice that each of the three complex roots of has the same magni-
tude, This means that the points corresponding to each cube root lie the same
distance from the origin; that is, the three points lie on a circle with center at the
origin and radius Furthermore, the arguments of these cube roots are 40°, 160°,

and 280°, the difference of consecutive pairs being This means that the 

three points are equally spaced on the circle, as shown in Figure 42.These results are
not coincidental. In fact, you are asked to show that these results hold for complex
nth roots in Problems 63 through 65.

120° =

360°
3

.

23 2.

23 2.
-1 + 23i

N O W W O R K P R O B L E M 5 3 .

‘Are You Prepared?’
Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

8.3 Assess your Understanding 

The Babylonians, Greeks, and Arabs consid-

ered square roots of negative quantities to

be impossible and equations with complex

solutions to be unsolvable. The first hint

that there was some connection between

real solutions of equations and complex

numbers came when Girolamo Cardano

(1501–1576) and Tartaglia (1499–1557)

found real roots of cubic equations by taking cube roots of complex
quantities. For centuries thereafter, mathematicians worked with

complex numbers without much belief in their actual existence. In

1673, John Wallis appears to have been the first to suggest the

graphical representation of complex numbers, a truly significant

idea that was not pursued further until about 1800. Several people,

including Karl Friedrich Gauss (1777–1855), then rediscovered the

idea, and graphical representation helped to establish complex

numbers as equal members of the number family. In practical appli-

cations, complex numbers have found their greatest uses in the

study of alternating current, where they are a commonplace tool,

and in the field of subatomic physics.

1. The quadratic formula will work perfectly well if the coefficients are complex numbers. Solve the following using De Moivre’s

Theorem where necessary.

[Hint: The answers are “nice.”]

(a) (b) z2
- (1 + i)z - 2 - i = 0z2

- (2 + 5i)z - 3 + 5i = 0

Historical Problems

HISTORICAL FEATURE

John Wallis
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Concepts and Vocabulary
5. When a complex number z is written in the polar form

the nonnegative number r is the _____
or _____ of z, and the angle is the _____ of z.

6. _____ Theorem can be used to raise a complex number to
a power.

7. A complex number will, in general, have _____ cube roots.

u, 0 … u 6 2p,
z = r1cos u + i sin u2,

8. True or False: De Moivre’s Theorem is useful for raising a
complex number to a positive integer power.

9. True or False: Using De Moivre’s Theorem, the square of a
complex number will have two answers.

10. True or False: The polar form of a complex number is
unique.

Skill Building
In Problems 11–22, plot each complex number in the complex plane and write it in polar form. Express the argument in degrees.

11. 12. 13. 14.

15. 16. 17. 18.

19. 20. 21. 22.

In Problems 23–32, write each complex number in rectangular form.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32.

In Problems 33–40, find and Leave your answers in polar form.
z

w
.zw

3acos 
p

10
+ i sin 

p

10
b

2acos 
p

18
+ i sin 

p

18
b0.41cos 200° + i sin 200°20.21cos 100° + i sin 100°2

4acos 
p

2
+ i sin 

p

2
b3acos 

3p
2

+ i sin 
3p
2
b2acos 

5p
6

+ i sin 
5p
6
b

4acos 
7p
4

+ i sin 
7p
4
b31cos 210° + i sin 210°221cos 120° + i sin 120°2

25 - i-2 + 3i2 + 23i3 - 4i

923 + 9i4 - 4i-2-3i

1 - 23i23 - i-1 + i1 + i

33.

 w = 41cos 20° + i sin 20°2
 z = 21cos 40° + i sin 40°2 34.

 w = cos 100° + i sin 100°

 z = cos 120° + i sin 120° 35.

 w = 41cos 270° + i sin 270°2
 z = 31cos 130° + i sin 130°2

36.

 w = 61cos 200° + i sin 200°2
 z = 21cos 80° + i sin 80°2 37.

 w = 2acos 
p

10
+ i sin 

p

10
b

 z = 2acos 
p

8
+ i sin 

p

8
b 38.

 w = 2acos 
9p
16

+ i sin 
9p
16
b

 z = 4acos 
3p
8

+ i sin 
3p
8
b

39.

 w = 23 - i

 z = 2 + 2i 40.

 w = 1 - 23i

 z = 1 - i

In Problems 41–52, write each expression in the standard form Verify your answers using a graphing utility.

41. 42. 43.

44. 45. 46.

47. 48. 49.

50. 51. 52.

In Problems 53–60, find all the complex roots. Leave your answers in polar form with the argument in degrees.

53. The complex cube roots of 54. The complex fourth roots of 
55. The complex fourth roots of 56. The complex cube roots of 
57. The complex fourth roots of 58. The complex cube roots of 
59. The complex fifth roots of i 60. The complex fifth roots of - i

-8-16i

-8 - 8i4 - 423i

23 - i1 + i

A1 - 25i B8A  22 - i B6A  23 - i B6
11 - i25c  23 acos 

5p
18

+ i sin 
5p
18
b d6c  25 acos 

3p
16

+ i sin 
3p
16
b d4

c1
2

 1cos 72° + i sin 72°2 d5C  23 1cos 10° + i sin 10°2 D6c  22 acos 
5p
16

+ i sin 
5p
16
b d4

c2acos 
p

10
+ i sin 

p

10
b d5331cos 80° + i sin 80°243341cos 40° + i sin 40°243

a + bi.
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Applications and Extensions
61. Find the four complex fourth roots of unity (1) and plot

them.

62. Find the six complex sixth roots of unity (1) and
plot them.

63. Show that each complex nth root of a nonzero complex
number has the same magnitude.w

64. Use the result of Problem 63 to draw the conclusion that
each complex nth root lies on a circle with center at the
origin. What is the radius of this circle?

65. Refer to Problem 64. Show that the complex nth roots of
a nonzero complex number are equally spaced on the circle.

66. Prove formula (6).

w

‘Are You Prepared?’ Answers

1. 2. 3. 4.
23
2

; -  
1
2

cos a cos b - sin a sin bsin a cos b + cos a sin b-4 + 3i

Figure 43

P

Q

(a)   Line containing P and Q (b)   Line segment PQ
P

Q
Terminal
point

Initial
point

(c)   Directed line segment PQ
P

QFigure 44

8.4 Vectors

OBJECTIVES 1 Graph Vectors

2 Find a Position Vector

3 Add and Subtract Vectors

4 Find a Scalar Product and the Magnitude of a Vector

5 Find a Unit Vector

6 Find a Vector from Its Direction and Magnitude

7 Work with Objects in Static Equilibrium

In simple terms, a vector (derived from the Latin vehere, meaning “to carry”) is a
quantity that has both magnitude and direction. It is customary to represent a vector
by using an arrow. The length of the arrow represents the magnitude of the vector,
and the arrowhead indicates the direction of the vector.

Many quantities in physics can be represented by vectors. For example, the ve-
locity of an aircraft can be represented by an arrow that points in the direction of
movement; the length of the arrow represents speed. If the aircraft speeds up, we
lengthen the arrow; if the aircraft changes direction, we introduce an arrow in the
new direction. See Figure 43. Based on this representation, it is not surprising that
vectors and directed line segments are somehow related.

Geometric Vectors
If P and Q are two distinct points in the xy-plane, there is exactly one line containing
both P and Q [Figure 44(a)]. The points on that part of the line that joins P to Q, in-
cluding P and Q, form what is called the line segment [Figure 44(b)]. If we order
the points so that they proceed from P to Q, we have a directed line segment from P
to Q, or a geometric vector, which we denote by In a directed line segment 
we call P the initial point and Q the terminal point, as indicated in Figure 44(c).

PQ 
!

,PQ 
!

.

  PQ
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P

Q

T

U

Figure 45

SECTION 8.4 Vectors 609

*Boldface letters will be used to denote vectors, to distinguish them from numbers. For handwritten
work, an arrow is placed over the letter to signify a vector.

The magnitude of the directed line segment is the distance from the point P
to the point Q; that is, it is the length of the line segment. The direction of is
from P to Q. If a vector v* has the same magnitude and the same direction as the
directed line segment we write

The vector v whose magnitude is 0 is called the zero vector, 0. The zero vector is
assigned no direction.

Two vectors v and w are equal, written

if they have the same magnitude and the same direction.
For example, the three vectors shown in Figure 45 have the same magnitude and

the same direction, so they are equal, even though they have different initial points
and different terminal points.As a result, we find it useful to think of a vector simply
as an arrow, keeping in mind that two arrows (vectors) are equal if they have the
same direction and the same magnitude (length).

Adding Vectors
The sum of two vectors is defined as follows:We position the vectors v and w
so that the terminal point of v coincides with the initial point of w, as shown in
Figure 46. The vector is then the unique vector whose initial point coincides
with the initial point of v and whose terminal point coincides with the terminal point
of w.

Vector addition is commutative. That is, if v and w are any two vectors, then

Figure 47 illustrates this fact. (Observe that the commutative property is
another way of saying that opposite sides of a parallelogram are equal and parallel.)

Vector addition is also associative. That is, if u, v, and w are vectors, then

Figure 48 illustrates the associative property for vectors.
The zero vector has the property that

for any vector v.
If v is a vector, then is the vector having the same magnitude as v, but whose

direction is opposite to v, as shown in Figure 49.
Furthermore,

If v and w are two vectors, we define the difference as

v - w = v + 1-w2
v � w

v + 1-v2 = 0

-v

v + 0 = 0 + v = v

u + 1v + w2 = 1u + v2 + w

v + w = w + v

v + w

v � w

v = w

v = PQ 
!

PQ 
!

,

PQ 
!

PQ 
!

w

u � v

v � w

u v

Figure 48
(u + v) + w = u + (v + w)

v � v

Figure 49

v �
 ww � v

w

v

v

w

Figure 47

v � w w

Initial point of v
v

Terminal point of w

Figure 46
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Figure 52

�1v
2v

v

Figure 51

v � w
v �

 w

w

� w

v
v

Figure 50

610 CHAPTER 8 Polar Coordinates; Vectors

Figure 50 illustrates the relationships among and 

Multiplying Vectors by Numbers
When dealing with vectors, we refer to real numbers as scalars. Scalars are
quantities that have only magnitude. Examples from physics of scalar quantities are
temperature, speed, and time. We now define how to multiply a vector by a scalar.

If is a scalar and v is a vector, the scalar product is defined as follows:

1. If the product is the vector whose magnitude is times the
magnitude of v and whose direction is the same as v.

2. If the product is the vector whose magnitude is times the
magnitude of v and whose direction is opposite that of v.

3. If or if then 

See Figure 51 for some illustrations.
For example, if a is the acceleration of an object of mass m due to a force F

being exerted on it, then, by Newton’s second law of motion, Here, ma is
the product of the scalar m and the vector a.

Scalar products have the following properties:

✓1 Graph Vectors

Graphing Vectors

Use the vectors illustrated in Figure 52 to graph each of the following vectors:

(a) (b) (c)

Solution Figure 53 illustrates each graph.

2v - w + u2v + 3wv - w

EXAMPLE 1

a1bv2 = 1ab2v
 1a + b2v = av + bv  a1v + w2 = av + aw

 0v = 0 1v = v  -1v = -v

F = ma.

av = 0.v = 0,a = 0

ƒa ƒava 6 0,

aava 7 0,

ava

v - w.v, w, v + w,

v � w

� w

v

(a)  v � w

2v � 3w

2v
3w

(b)  2v � 3w

u
2v � w � u

� w

2v

(c)  2v � w � u

Figure 53

�

N O W W O R K P R O B L E M S 7  A N D 9 .
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P � (a, b)

xo

 v =
 <a, b

>

Figure 54

SECTION 8.4 Vectors 611

a

bv

P � (a, b)

a
A

v

P2 � (x2, y2)

P1 � (x1, y1)

(x2 � x1)

(y2 � y1)

Q
O

b

x

yFigure 55
8a, b9 = 8x2 - x1 , y2 - y19

Magnitudes of Vectors
If v is a vector, we use the symbol to represent the magnitude of v. Since equals
the length of a directed line segment, it follows that has the following properties:

Theorem Properties of 

If v is a vector and if is a scalar, then
(a) (b) if and only if 

(c) (d)

Property (a) is a consequence of the fact that distance is a nonnegative number.
Property (b) follows, because the length of the directed line segment is positive
unless P and Q are the same point, in which case the length is 0. Property (c) follows
because the length of the line segment equals the length of the line segment 
Property (d) is a direct consequence of the definition of a scalar product.

A vector u for which is called a unit vector.

✓2 Find a Position Vector
To compute the magnitude and direction of a vector, we need an algebraic way of
representing vectors.

An algebraic vector v is represented as

where a and b are real numbers (scalars) called the components of the vector v.

We use a rectangular coordinate system to represent algebraic vectors in the
plane. If is an algebraic vector whose initial point is at the origin, then v is
called a position vector. See Figure 54. Notice that the terminal point of the position
vector is 

The next result states that any vector whose initial point is not at the origin is
equal to a unique position vector.

Theorem Suppose that v is a vector with initial point not necessarily the 

origin, and terminal point If then v is equal to the
position vector

(1)

To see why this is true, look at Figure 55. Triangle OPA and triangle are
congruent. [Do you see why? The line segments have the same magnitude, so

P1 P2 Q

v = 8x2 - x1 , y2 - y19

v = P1 P2 
!

,P2 = 1x2 , y22.
P1 = 1x1 , y12,

P = 1a, b2.v = 8a, b9
v = 8a, b9

v = 8a, b9

7u 7 = 1

  QP.  PQ

PQ 
!

7av 7 = ƒa ƒ 7v 77 -v 7 = 7v 7
v = 07v 7 = 07v 7 Ú 0

a

7v 7
7v 7

7v 77v 7

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 611



y

j

i

(0, 1)

(1, 0) x

Figure 57
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and they have the same direction, so 
Since the triangles are right triangles, we have angle–side–angle.] It follows that
corresponding sides are equal. As a result, and so v may
be written as

Because of this result, we can replace any algebraic vector by a unique position
vector, and vice versa. This flexibility is one of the main reasons for the wide use
of vectors.

Finding a Position Vector

Find the position vector of the vector if and 

Solution By equation (1), the position vector equal to v is

See Figure 56.

v = 84 - 1-12, 6 - 29 = 85, 49

P2 = 14, 62.P1 = 1-1, 22v = P1 P2 
!

EXAMPLE 2

v = 8a, b9 = 8x2 - x1 , y2 - y19
y2 - y1 = b,x2 - x1 = a

∠POA = ∠P2 P1 Q.d1O, P2 = d1P1 , P22;

Two position vectors v and w are equal if and only if the terminal point of v is
the same as the terminal point of w. This leads to the following result:

Theorem Equality of Vectors

Two vectors v and w are equal if and only if their corresponding components
are equal. That is,

We now present an alternative representation of a vector in the plane that is
common in the physical sciences. Let i denote the unit vector whose direction is
along the positive x-axis; let j denote the unit vector whose direction is along the
positive y-axis. Then and as shown in Figure 57. Any vector

can be written using the unit vectors i and j as follows:

We call a and b the horizontal and vertical components of v, respectively. For exam-
ple, if then 5 is the horizontal component and 4 is the vertical
component.

N O W W O R K P R O B L E M 2 7 .

v = 85, 49 = 5i + 4 j,

v = 8a, b9 = a81, 09 + b80, 19 = ai + bj

v = 8a, b9 j = 80, 19,i = 81, 09

then  v = w if and only if a1 = a2 and b1 = b2 .

If v = 8a1 , b19 and w = 8a2 , b29

y

v � <5, 4>

(5, 4)

P2 � (4, 6)

P1 � (�1, 2)

O 5

5

x

Figure 56

�
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✓3 Add and Subtract Vectors
We define addition, subtraction, scalar product, and magnitude in terms of the
components of a vector.

Let and be two vectors, and
let be a scalar. Then

(2)

(3)

(4)

(5) 7v 7 = 3a2
1 + b2

1

 av = 1aa12i + 1ab12j = 8aa1 , ab19
 v - w = 1a1 - a22i + 1b1 - b22j = 8a1 - a2 , b1 - b29
 v + w = 1a1 + a22i + 1b1 + b22j = 8a1 + a2 , b1 + b29

a

w = a2 i + b2 j = 8a2 , b29v = a1i + b1j = 8a1 , b19

Adding and Subtracting Vectors

If and find:

(a) (b)

Solution (a)
or

(b)

or
�v - w = 82, 39 - 83, -49 = 82 - 3, 3 - 1-429 = 8-1, 79

v - w = 12i + 3j2 - 13i - 4j2 = 12 - 32i + 33 - 1-424j = - i + 7j

v + w = 82, 39 + 83, -49 = 82 + 3, 3 + 1-429 = 85, -19
v + w = 12i + 3j2 + 13i - 4j2 = 12 + 32i + 13 - 42j = 5i - j

v - wv + w

w = 3i - 4j = 83, -49,v = 2i + 3j = 82, 39
EXAMPLE 3

a2
a2

b1

b2
b2

a1

y

v �
 ww

v

(a2, b2)

(a1, b1)

(a1 � a2, b1 � b2)

O x

(a)   Illustration of property (2)

	a1

	�0

b1

	b1

a1

y

v

	v

(a1, b1)

(	a1, 	b1)

O x

(b)   Illustration of property (4), 

b1
b1

y

v

P1 � (a1, b1)

O x

(c)

a2
1 � b2

1

a1

Illustration of property (5):
|| v || � Distance from O to P1
|| v || � 

Figure 58

In Words
To add two vectors, add
corresponding components. To
subtract two vectors, subtract
corresponding components.

These definitions are compatible with the geometric definitions given earlier in
this section. See Figure 58.
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614 CHAPTER 8 Polar Coordinates; Vectors

✓4 Find a Scalar Product and the Magnitude of a Vector

Finding Scalar Products and Magnitudes

If and find:

(a) 3v (b) (c)

Solution (a)

or

(b)

or

(c) �

N O W W O R K P R O B L E M S 3 3  A N D 3 9 .

For the remainder of the section, we will express a vector v in the form 

✓5 Find a Unit Vector
Recall that a unit vector u is a vector for which In many applications, it is
useful to be able to find a unit vector u that has the same direction as a given
vector v.

Theorem Unit Vector in the Direction of v

For any nonzero vector v, the vector

is a unit vector that has the same direction as v.

Proof Let Then and

The vector u is in the same direction as v, since Furthermore,

That is, u is a unit vector in the direction of v. ■

7u 7 = A
a2

a2
+ b2 +

b2

a2
+ b2 = A

a2
+ b2

a2
+ b2 = 1

7v 7 7 0.

u =

v
7v 7 =

ai + bj

3a2
+ b2

=

a

3a2
+ b2

 i +

b

3a2
+ b2

 j

7v 7 = 3a2
+ b2v = ai + bj.

u =

v
7v 7

7u 7 = 1.

ai + bj.

7v 7 = 72i + 3j 7 = 322
+ 32

= 213

 = 84 - 9, 6 - 1-1229 = 8-5, 189 2v - 3w = 282, 39 - 383, -49 = 84, 69 - 89, -129
 = -5i + 18j

 2v - 3w = 212i + 3j2 - 313i - 4j2 = 4i + 6j - 9i + 12j

3v = 382, 39 = 86, 99
3v = 312i + 3j2 = 6i + 9j

7v 72v - 3w

w = 3i - 4j = 83, -49,v = 2i + 3j = 82, 39
EXAMPLE 4
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As a consequence of this theorem, if u is a unit vector in the same direction as a
vector v, then v may be expressed as

(6)

This way of expressing a vector is useful in many applications.

Finding a Unit Vector

Find a unit vector in the same direction as 

Solution We find first.

Now we multiply v by the scalar A unit vector in the same direction as v is

✔ CHECK: This vector is, in fact, a unit vector because

�

N O W W O R K P R O B L E M 4 9 .

✓6 Find a Vector from Its Direction and Magnitude
If a vector represents the speed and direction of an object, it is called a velocity
vector. If a vector represents the direction and amount of a force acting on an
object, it is called a force vector. In many applications, a vector is described in terms
of its magnitude and direction, rather than in terms of its components. For example,
a ball thrown with an initial speed of 25 miles per hour at an angle 30° to the
horizontal is a velocity vector.

Suppose that we are given the magnitude of a nonzero vector v and the
angle between v and i. To express v in terms of and we first
find the unit vector u having the same direction as v.

(7)

Look at Figure 59. The coordinates of the terminal point of u are 
Then and, from (7),

(8)

where is the angle between v and i.a

v = 7v 7 1cos a i + sin a j2

u = cos ai + sin aj
1cos a, sin a2.

u =

v
7v 7 or v = 7v 7u

a,7v 7a, 0° … a 6 360°,
7v 7

a4
5
b2

+ a -  
3
5
b2

=

16
25

+

9
25

=

25
25

= 1

v
7v 7 =

4i - 3j
5

=

4
5

 i -

3
5

 j

1
7v 7 =

1
5

.

7v 7 = 74i - 3j 7 = 216 + 9 = 5

7v 7
v = 4i - 3j.

EXAMPLE 5

v = 7v 7u
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Resultant

Figure 60
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Writing a Vector When Its Magnitude and Direction Are Given

A ball is thrown with an initial speed of 25 miles per hour in a direction that makes
an angle of 30° with the positive x-axis. Express the velocity vector v in terms of i
and j. What is the initial speed in the horizontal direction? What is the initial speed
in the vertical direction?

Solution The magnitude of v is miles per hour, and the angle between the direction
of v and i, the positive x-axis, is By equation (8),

The initial speed of the ball in the horizontal direction is the horizontal 

component of v, miles per hour. The initial speed in the vertical 

direction is the vertical component of v, miles per hour.
�

N O W W O R K P R O B L E M 6 1 .

✓7 Work with Objects in Static Equilibrium
Because forces can be represented by vectors, two forces “combine” the way that
vectors “add.” If and are two forces simultaneously acting on an object, the
vector sum is the resultant force. The resultant force produces the same
effect on the object as that obtained when the two forces and act on the object.
See Figure 60. An application of this concept is static equilibrium. An object is said
to be in static equilibrium if (1) the object is at rest and (2) the sum of all forces
acting on the object is zero, that is, if the resultant force is 0.

An Object in Static Equilibrium

A box of supplies that weighs 1200 pounds is suspended by two cables attached to
the ceiling, as shown in Figure 61. What is the tension in the two cables?

Solution We draw a force diagram using the vectors shown in Figure 62. The ten-
sions in the cables are the magnitudes and of the force vectors and The
magnitude of the force vector equals 1200 pounds, the weight of the box. Now write
each force vector in terms of the unit vectors i and j. For and we use equation
(8). Remember that is the angle between the vector and the positive x-axis.

For static equilibrium, the sum of the force vectors must equal zero.

F1 + F2 + F3 = -  
23
2

 7F1 7 i +

1
2

 7F1 7 j +

22
2

 7F2 7 i +

22
2

 7F2 7 j - 1200j = 0

 F3 = -1200j

 F2 = 7F2 7 1cos 45°i + sin 45°j2 = 7F2 7 a22
2

 i +

22
2

 jb =

22
2

 7F2 7 i +

22
2

 7F2 7j
 F1 = 7F1 7 1cos 150°i + sin 150°j2 = 7F1 7 a -  

23
2

 i +

1
2

 jb = -  
23
2

 7F1 7 i +

1
2

 7F1 7j
a

F2 ,F1

F3

F2 .F17F2 77F1 7

EXAMPLE 7

F2F1

F1 + F2

F2F1

25
2

= 12.5

2523
2

L 21.65

v = 7v 7 1cos a i + sin a j2 = 251cos 30°i + sin 30°j2 = 25a23
2

 i +

1
2

 jb =

2523
2

 i +

25
2

 j

a = 30°.
7v 7 = 25

EXAMPLE 6
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The i component and j component will each equal zero. This results in the two
equations

(9)

(10)

We solve equation (9) for and obtain

(11)

Substituting into equation (10) and solving for we obtain

Substituting this value into equation (11) yields 

The left cable has tension of approximately 878.5 pounds and the right cable has
tension of approximately 1075.9 pounds. �

7F2 7 =

23

22
 7F1 7 =

23

22
#

2400

1 + 23
L 1075.9 pounds

7F2 7 .
 7F1 7 =

2400

1 + 23
L 878.5 pounds

 
1 + 23

2
 7F1 7 = 1200

 
1
2

 7F1 7 +

23
2

 7F1 7 - 1200 = 0

 
1
2

 7F1 7 +

22
2

 a23

22
 7F1 7 b - 1200 = 0

7F1 7 ,
7F2 7 =

23

22
 7F1 7

7F2 7
 
1
2

 7F1 7 +

22
2

 7F2 7 - 1200 = 0

 -  
23
2

 7F1 7 +

22
2

 7F2 7 = 0

The history of vectors is surprisingly compli-

cated for such a natural concept. In the xy-
plane, complex numbers do a good job of

imitating vectors. About 1840, mathemati-

cians became interested in finding a system

that would do for three dimensions what

the complex numbers do for two dimen-

sions. Hermann Grassmann (1809–1877), in

Germany, and William Rowan Hamilton

(1805–1865), in Ireland, both attempted to find solutions.

Hamilton’s system was the quaternions, which are best

thought of as a real number plus a vector, and do for four dimen-

sions what complex numbers do for two dimensions. In this system

the order of multiplication matters; that is, Also, twoab � ba.

products of vectors emerged, the scalar (or dot) product and the

vector (or cross) product.

Grassmann’s abstract style, although easily read today, was

almost impenetrable during the previous century, and only a few of

his ideas were appreciated. Among those few were the same scalar

and vector products that Hamilton had found.

About 1880, the American physicist Josiah Willard Gibbs

(1839–1903) worked out an algebra involving only the simplest

concepts: the vectors and the two products. He then added some

calculus, and the resulting system was simple, flexible, and well

adapted to expressing a large number of physical laws. This system

remains in use essentially unchanged. Hamilton’s and Grassmann’s

more extensive systems each gave birth to much interesting math-

ematics, but little of this mathematics is seen at elementary levels.

HISTORICAL FEATURE

Josiah Gibbs

(1839–1903)
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Concepts and Vocabulary

8.4 Assess Your Understanding

1. A vector whose magnitude is 1 is called a(n) _____ vector.

2. The product of a vector by a number is called a(n) _____
product.

3. If then a is called the _____ component of v
and b is the _____ component of v.

v = ai + bj,

4. True or False: Vectors are quantities that have magnitude
and direction.

5. True or False: Force is a physical example of a vector.

6. True or False: Mass is a physical example of a vector.

Skill Building
In Problems 7–14, use the vectors in the figure at the right to graph each of the following vectors.

v

u

w

7. 8.

9. 3v 10. 4w

11. 12.

13. 14. 2u - 3v + w3v + u - 2w

u - vv - w

u + vv + w

In Problems 15–22, use the figure at the right. Determine whether the given statement is true or false.

G

B

KFA
H

C

D
E

15. 16.

17. 18.

19. 20.

21. 22. A + B + C + H + G = 0A + B + K + G = 0

H - C = G - FE + D = G + H

G + H + E = DC = D - E + F

K + G = FA + B = F

23. If what is 24. If what is 

In Problems 25–32, the vector v has initial point P and terminal point Q. Write v in the form that is, find its position vector.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33–38, find 

33. 34. 35.

36. 37. 38.

In Problems 39–44, find each quantity if and 

39. 40. 41.

42. 43. 44.

In Problems 45–50, find the unit vector having the same direction as v.

45. 46. 47.

48. 49. 50. v = 2i - jv = i - jv = -5i + 12j

v = 3i - 4jv = -3jv = 5i

7v 7 + 7w 77v 7 - 7w 77v + w 7
7v - w 73v - 2w2v + 3w

w = -2i + 3j.v = 3i - 5j

v = 6i + 2jv = -2i + 3jv = - i - j

v = i - jv = -5i + 12jv = 3i - 4j

7v 7 .
P = 11, 12; Q = 12, 22P = 11, 02; Q = 10, 12
P = 1-1, 42; Q = 16, 22P = 1-2, -12; Q = 16, -22
P = 1-3, 22; Q = 16, 52P = 13, 22; Q = 15, 62
P = 10, 02; Q = 1-3, -52P = 10, 02; Q = 13, 42

ai + bj;

7 -4v 7?7v 7 = 2,73v 7?7v 7 = 4,
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51. Find a vector v whose magnitude is 4 and whose component
in the i direction is twice the component in the j direction.

52. Find a vector v whose magnitude is 3 and whose component in
the i direction is equal to the component in the j direction.

53. If and find all numbers x for which7v + w 7 = 5.
w = xi + 3j,v = 2i - j 54. If and find all numbers x such that

the vector represented by has length 5.PQ 
!

Q = 1x, 42,P = 1-3, 12

In Problems 55–60, write the vector v in the form given its magnitude and the angle it makes with the positive x-axis.

55. 56. 57.

58. 59. 60.

Applications and Extensions

7v 7 = 15, a = 315°7v 7 = 25, a = 330°7v 7 = 3, a = 240°

7v 7 = 14, a = 120°7v 7 = 8, a = 45°7v 7 = 5, a = 60°

a7v 7ai + bj,

61. A child pulls a wagon with a force of 40 pounds. The handle
of the wagon makes an angle of 30° with the ground.
Express the force vector F in terms of i and j.

62. A man pushes a wheelbarrow up an incline of 20° with a force
of 100 pounds. Express the force vector F in terms of i and j.

63. Resultant Force Two forces of magnitude 40 newtons (N)
and 60 newtons act on an object at angles of 30° and 
with the positive x-axis as shown in the figure. Find the direc-
tion and magnitude of the resultant force; that is, find 

64. Resultant Force Two forces of magnitude 30 newtons (N)
and 70 newtons act on an object at angles of 45° and 120° with
the positive x-axis as shown in the figure. Find the direction
and magnitude of the resultant force; that is, find 

65. Static Equilibrium A weight of 1000 pounds is suspended
from two cables as shown in the figure. What is the tension
in the two cables?

25° 40°

1000
pounds

y

120°
45°

x



F1

 � 30 N



F2

 � 70 N

F1 + F2 .

y

�45°

30°
x



F1

 � 40 N



F2

 � 60 N

F1 + F2 .

-45°

66. Static Equilibrium A weight of 800 pounds is suspended
from two cables as shown in the figure. What is the tension
in the two cables?

67. Static Equilibrium A tightrope walker located at a certain
point deflects the rope as indicated in the figure. If the
weight of the tightrope walker is 150 pounds, how much
tension is in each part of the rope?

68. Static Equilibrium Repeat Problem 67 if the left angle is
3.8°, the right angle is 2.6°, and the weight of the tightrope
walker is 135 pounds.

69. Show on the following graph the force needed for the object
at P to be in static equilibrium.

F1

F2

F3

F4

P

150 pounds

3.7°4.2°

35° 50°

800
pounds

Discussion and Writing
70. Explain in your own words what a vector is. Give an

example of a vector.
71. Write a brief paragraph comparing the algebra of complex

numbers and the algebra of vectors.
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8.5 The Dot Product
PREPARING FOR THIS SECTION Before getting started, review the following:

• Law of Cosines (Section 7.3, p. 543)

Now work the ‘Are You Prepared?’ problem on page 626.

OBJECTIVES 1 Find the Dot Product of Two Vectors

2 Find the Angle between Two Vectors

3 Determine Whether Two Vectors Are Parallel

4 Determine Whether Two Vectors Are Orthogonal

5 Decompose a Vector into Two Orthogonal Vectors

6 Compute Work

✓1 Find the Dot Product of Two Vectors
The definition for a product of two vectors is somewhat unexpected. However, such
a product has meaning in many geometric and physical applications.

If and are two vectors, the dot product is
defined as

(1)

Finding Dot Products

If and find:

(a) (b) (c)

(d) (e) (f)

Solution (a) (b)

(c) (d)

(e) (f) �

Since the dot product of two vectors v and w is a real number (scalar), we
sometimes refer to it as the scalar product.

Properties
The results obtained in Example 1 suggest some general properties.

Theorem Properties of the Dot Product

If u, v, and w are vectors, then

Commutative Property

(2)u # v = v # u

v # w

7w 7 = 352
+ 32

= 2347v 7 = 422
+ 1-322 = 213

w # w = 5152 + 3132 = 34v # v = 2122 + 1-321-32 = 13

w # v = 5122 + 31-32 = 1v # w = 2152 + 1-323 = 1

7w 77v 7w # w

v # vw # vv # w

w = 5i + 3j,v = 2i - 3j

EXAMPLE 1

v # w = a1 a2 + b1 b2

v # ww = a2 i + b2 jv = a1 i + b1 j
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Distributive Property

(3)

(4)

(5)

Proof We will prove properties (2) and (4) here and leave properties (3) and (5)
as exercises (see Problems 39 and 40).

To prove property (2), we let and Then

To prove property (4), we let Then

■

✓2 Find the Angle between Two Vectors
One use of the dot product is to calculate the angle between two vectors.
We proceed as follows.

Let u and v be two vectors with the same initial point A. Then the vectors u, v,
and form a triangle. The angle at vertex A of the triangle is the angle
between the vectors u and v. See Figure 63.We wish to find a formula for calculating
the angle 

The sides of the triangle have lengths and and is the included
angle between the sides of length and The Law of Cosines (Section 7.3) can
be used to find the cosine of the included angle.

Now we use property (4) to rewrite this equation in terms of dot products.

(6)

Then we apply the distributive property (3) twice on the left side of (6) to obtain

(7)

Combining equations (6) and (7), we have

We have proved the following result:

Theorem Angle between Vectors

If u and v are two nonzero vectors, the angle between u and v is
determined by the formula

(8)cos u =

u # v
7u 7 7v 7

u, 0 … u … p,

 u # v = 7u 7 7v 7  cos u

 u # u + v # v - 2u # v = u # u + v # v - 2 7u 7 7v 7  cos u

 Property (2)
 q
 = u # u + v # v - 2u # v
 = u # u - u # v - v # u + v # v

 1u - v2 # 1u - v2 = u # 1u - v2 - v # 1u - v2
1u - v2 # 1u - v2 = u # u + v # v - 2 7u 7 7v 7  cos u

7u - v 72 = 7u 72 + 7v 72 - 2 7u 7 7v 7  cos u

7u 7 .7v 7 u7u - v 7 ,7v 7 , 7u 7 ,u.

uu - v

v # v = a2
+ b2

= 7v 72
v = ai + bj.

u # v = a1 a2 + b1 b2 = a2 a1 + b2 b1 = v # u

v = a2 i + b2 j.u = a1 i + b1 j

 0 # v = 0

 v # v = 7v 72

u # 1v + w2 = u # v + u # w
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Finding the Angle between Two Vectors

Find the angle between and 

Solution We compute the quantities and 

By formula (8), if is the angle between u and v, then

We find that See Figure 64. �

N O W W O R K P R O B L E M S 7 ( a )  A N D ( b ) .

Finding the Actual Speed and Direction of an Aircraft

A Boeing 737 aircraft maintains a constant airspeed of 500 miles per hour in the
direction due south.The velocity of the jet stream is 80 miles per hour in a northeasterly
direction. Find the actual speed and direction of the aircraft relative to the ground.

Solution We set up a coordinate system in which north (N) is along the positive y-axis.
See Figure 65. Let

The velocity of the jet stream has magnitude 80 and direction NE (northeast), so
the angle between We express in terms of i and j as

The velocity of the aircraft relative to the ground is

The actual speed of the aircraft is

The angle between and the vector (the velocity of the aircraft
relative to the air) is determined by the equation

The direction of the aircraft relative to the ground is approximately S7.3°E
(about 7.3° east of south). �

N O W W O R K P R O B L E M 2 5 .

 u L 7.3°

 cos u =

vg
# va

7vg 7 7va 7 L

A4022 - 500 B1-5002
1447215002 L 0.9920

va = -500jvgu

7vg 7 = 3A4022 B2 + A4022 - 500 B2 L 447 miles per hour

vg = va + vw = -500j + 4022 1i + j2 = 4022i + A4022 - 500 B j

vw = 801cos 45°i + sin 45°j2 = 80a22
2

 i +

22
2

 jb = 4022 1i + j2
vwvw and i is 45°.

vw

 vg = velocity of aircraft relative to ground

 vw = velocity of jet stream
 va = velocity of aircraft relative to the air = -500j

EXAMPLE 3

u L 105°.

cos u =

u # v
7u 7 7v 7 =

-7

5229
L -0.26

u

 7v 7 = 322
+ 52

= 229

 7u 7 = 442
+ 1-322 = 5

 u # v = 4122 + 1-32152 = -7

7v 7 .u # v, 7u 7 ,
v = 2i + 5j.u = 4i - 3ju

UEXAMPLE 2
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x

y w � 3i � 6j

v � 2i � j

Figure 67

vw

Figure 66
v is orthogonal to w.

SECTION 8.5 The Dot Product 623

*Orthogonal, perpendicular, and normal are all terms that mean “meet at a right angle.” It is customary to
refer to two vectors as being orthogonal, two lines as being perpendicular, and a line and a plane or a
vector and a plane as being normal.

✓3 Determine Whether Two Vectors Are Parallel
Two vectors v and w are said to be parallel if there is a nonzero scalar so that

In this case, the angle between v and w is 0 or 

Determining Whether Vectors Are Parallel

The vectors and are parallel, since Furthermore,
since

the angle between v and w is 0. �

✓4 Determine Whether Two Vectors are Orthogonal
If the angle between two nonzero vectors v and w is the vectors v and w are
called orthogonal.* See Figure 66.

Since it follows from formula (8) that if v and w are orthogonal then

On the other hand, if then either or or In the 

latter case, and v and w are orthogonal. If v or w is the zero vector, then,

since the zero vector has no specific direction, we adopt the convention that the zero
vector is orthogonal to every vector.

Theorem Two vectors v and w are orthogonal if and only if

Determining Whether Two Vectors Are Orthogonal

The vectors

are orthogonal, since

See Figure 67. �

N O W W O R K P R O B L E M 7 ( c ) .

v # w = 6 - 6 = 0

v = 2i - j and w = 3i + 6j

EXAMPLE 5

v # w = 0

u =

p

2
,

cos u = 0.w = 0v = 0v # w = 0,

v # w = 0.

cos 
p

2
= 0,

p

2
,u

u

cos u =

v # w
7v 7 7w 7 =

18 + 2

210 240
=

20

2400
= 1

v =

1
2

 w.w = 6i - 2jv = 3i - j

EXAMPLE 4

p.uv = aw.
a
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v2
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v

wv1

v2

P

(b)

Figure 69

F1

F2F

Figure 68

624 CHAPTER 8 Polar Coordinates; Vectors

✓5 Decompose a Vector into Two Orthogonal Vectors
In many physical applications, it is necessary to find “how much” of a vector is
applied in a given direction. Look at Figure 68. The force F due to gravity is
pulling straight down (toward the center of Earth) on the block. To study the ef-
fect of gravity on the block, it is necessary to determine how much of F is actually
pushing the block down the incline and how much is pressing the block
against the incline at a right angle to the incline. Knowing the decomposition
of F often will allow us to determine when friction is overcome and the block will
slide down the incline.

Suppose that v and w are two nonzero vectors with the same initial point P.
We seek to decompose v into two vectors: which is parallel to w, and which is
orthogonal to w. See Figure 69(a) and (b). The vector is called the vector
projection of v onto w.

The vector is obtained as follows: From the terminal point of v, drop a
perpendicular to the line containing w. The vector is the vector from P to the foot
of this perpendicular. The vector is given by Note that

is parallel to w, and is orthogonal to w. This is the decomposition
of v that we wanted.

Now we seek a formula for that is based on a knowledge of the vectors v and
w. Since we have

(9)

Since is orthogonal to w, we have Since is parallel to w, we have
for some scalar Equation (9) can be written as

Then

Theorem If v and w are two nonzero vectors, the vector projection of v onto w is

(10)

The decomposition of v into and where is parallel to w and is
perpendicular to w, is

(11)

Decomposing a Vector into Two Orthogonal Vectors

Find the vector projection of onto Decompose v into two
vectors and where is parallel to w and is orthogonal to w.v2v1v2 ,v1

w = i + j.v = i + 3j

EXAMPLE 6

v1 =

v # w
7w 72  w v2 = v - v1

v2v1v2 ,v1

v1 =

v # w
7w 72  w

v1 = aw =

v # w
7w 72  w

 a =

v # w
7w 72

v1 = aw; v2
# w = 0 v # w = aw # w = a 7w 72

a.v1 = aw
v1v2

# w = 0.v2

v # w = 1v1 + v22 # w = v1
# w + v2

# w

v = v1 + v2 ,
v1

v2v = v1 + v2 , v1

v2 = v - v1 .v2

v1

v1

v1

v2 ,v1 ,

1F22,
1F12
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A

A

B

F
θ

Figure 71

x

y

w � i � j

v � i � 3j

v2 � �i � j

v1 � 2(i � j)

Figure 70
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Solution We use formulas (10) and (11).

See Figure 70. �

N O W W O R K P R O B L E M 1 9 .

✓6 Compute Work
In elementary physics, the work W done by a constant force F in moving an object
from a point A to a point B is defined as

Work is commonly measured in foot-pounds or in newton-meters (joules).
In this definition, it is assumed that the force F is applied along the line of

motion. If the constant force F is not along the line of motion, but, instead, is at an
angle to the direction of motion, as illustrated in Figure 71, then the work W done
by F in moving an object from A to B is defined as

(12)

This definition is compatible with the force times distance definition given
above, since

Computing Work

Figure 72(a) shows a girl pulling a wagon with a force of 50 pounds. How much work
is done in moving the wagon 100 feet if the handle makes an angle of 30° with the
ground?

EXAMPLE 7

 = 7projection of F on AB 7 7AB 
! 7 =

F # AB 
!

7AB 
! 72  7AB 

! 7 7AB 
! 7 = F # AB 

!

 W = 1amount of force in the direction of AB 
!21distance2

W = F # AB 
!

u

W = 1magnitude of force21distance2 = 7F 7 7AB 
! 7

 v2 = v - v1 = 1i + 3j2 - 21i + j2 = - i + j

 v1 =

v # w
7w 72  w =

1 + 3

A  22 B2 w = 2w = 21i + j2

(a)

30°
30°

50(cos 30°)i

50(sin 30°)j

x

y

F

(0, 0) (100, 0)

(b)



F

 � 50

Figure 72
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2. If then the two vectors v and w are _____.

3. If then the two vectors v and w are _____.

4. True or False: If v and w are parallel vectors, then v # w = 0.

v = 3w,

v # w = 0, 5. True or False: Given two nonzero vectors v and w, it is
always possible to decompose v into two vectors, one
parallel to w and the other perpendicular to w.

6. True or False: Work is a physical example of a vector.

1. We stated in an earlier Historical Feature that complex num-

bers were used as vectors in the plane before the general

notion of a vector was clarified. Suppose that we make the

correspondence

 ci + dj 4 c + di

 ai + bj 4 a + bi

 Vector 4 Complex number

Show that

This is how the dot product was found originally. The imaginary part

is also interesting. It is a determinant (see Section 10.3) and repre-

sents the area of the parallelogram whose edges are the vectors.

This is close to some of Hermann Grassmann’s ideas and is also con-

nected with the scalar triple product of three-dimensional vectors.

(ai + bj) # (ci + dj) = real part3(a + bi)(c + di)4

HISTORICAL FEATURE

Solution We position the vectors in a coordinate system in such a way that the wagon is
moved from to The motion is from to so

The force vector F, as shown in Figure 72(b), is

By formula (12), the work done is

�

N O W W O R K P R O B L E M 3 5 .

W = F # AB 
!

= 25 A  23i + j B # 100i = 250023 foot-pounds

F = 501cos 30°i + sin 30°j2 = 50a23
2

 i +

1
2

 jb = 25 A  23i + j B
AB 

!

= 100i.
B = 1100, 02,A = 10, 021100, 02.10, 02

‘Are You Prepared?’
Answer is given at the end of these exercises. If you get the wrong answer, read the page listed in red.

1. In a triangle with sides a, b, c and angles the Law of Cosines states that _____. (p. 543)

Concepts and Vocabulary

a, b, g,

8.5 Assess Your Understanding

Skill Building
In Problems 7–16, (a) find the dot product (b) find the angle between v and w; (c) state whether the vectors are parallel, orthogonal,
or neither.

7. 8. 9.

10. 11. 12.

13. 14.

15. 16.

17. Find a so that the vectors and are orthogonal.

18. Find b so that the vectors and are orthogonal.

In Problems 19–24, decompose v into two vectors and where is parallel to w and is orthogonal to w.

19. 20. 21.

22. 23. 24. v = i - 3j, w = 4i - jv = 3i + j, w = -2i - jv = 2i - j, w = i - 2j

v = i - j, w = i - 2jv = -3i + 2j, w = 2i + jv = 2i - 3j, w = i - j

v2v1v2 ,v1

w = i + bjv = i + j

w = 2i + 3jv = i - aj

v = i, w = -3jv = 4i, w = j

v = 3i - 4j, w = 4i - 3jv = 3i + 4j, w = 4i + 3j

v = i + 23j, w = i - jv = 23i - j, w = i + jv = 2i + 2j, w = i + 2j

v = 2i + j, w = i - 2jv = i + j, w = - i + jv = i - j, w = i + j

v # w;
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Applications and Extensions
25. Finding the Actual Speed and Direction of an Aircraft A

Boeing 747 jumbo jet maintains an airspeed of 550 miles per
hour in a southwesterly direction. The velocity of the jet
stream is a constant 80 miles per hour from the west. Find
the actual speed and direction of the aircraft.

26. Finding the Correct Compass Heading The pilot of an air-
craft wishes to head directly east, but is faced with a wind
speed of 40 miles per hour from the northwest. If the pilot
maintains an airspeed of 250 miles per hour, what compass
heading should be maintained? What is the actual speed of
the aircraft?

27. Correct Direction for Crossing a River A river has a
constant current of 3 kilometers per hour. At what angle to
a boat dock should a motorboat, capable of maintaining a
constant speed of 20 kilometers per hour, be headed in
order to reach a point directly opposite the dock? If the 

river is kilometer wide, how long will it take to cross?

28. Correct Direction for Crossing a River Repeat Problem
27 if the current is 5 kilometers per hour.

29. Braking Load A Toyota Sienna with a gross weight of 5300
pounds is parked on a street with a slope of 8°. See the figure.
Find the force required to keep the Sienna from rolling
down the hill. What is the force perpendicular to the hill?

Weight � 5300 pounds

Current

Boat

Direction of boat
due to current

1
2

Jet stream

N

S
W E

30. Braking Load A Pontiac Bonneville with a gross weight of
4500 pounds is parked on a street with a slope of 10°. Find
the force required to keep the Bonneville from rolling down
the hill. What is the force perpendicular to the hill?

31. Ground Speed and Direction of an Airplane An airplane
has an airspeed of 500 kilometers per hour bearing N45°E.
The wind velocity is 60 kilometers per hour in the direction
N30°W. Find the resultant vector representing the path of
the plane relative to the ground. What is the ground speed
of the plane? What is its direction?

32. Ground Speed and Direction of an Airplane An airplane
has an airspeed of 600 kilometers per hour bearing S30°E.
The wind velocity is 40 kilometers per hour in the direction
S45°E. Find the resultant vector representing the path of the
plane relative to the ground. What is the ground speed of
the plane? What is its direction?

33. Crossing a River A small motorboat in still water main-
tains a speed of 20 miles per hour. In heading directly across
a river (that is, perpendicular to the current) whose current
is 3 miles per hour, find a vector representing the speed and
direction of the motorboat. What is the true speed of the
motorboat? What is its direction?

34. Crossing a River A small motorboat in still water main-
tains a speed of 10 miles per hour. In heading directly across
a river (that is, perpendicular to the current) whose current
is 4 miles per hour, find a vector representing the speed and
direction of the motorboat. What is the true speed of the
motorboat? What is its direction?

35. Computing Work Find the work done by a force of
3 pounds acting in the direction 60° to the horizontal in
moving an object 2 feet from to 

36. Computing Work Find the work done by a force of
1 pound acting in the direction 45° to the horizontal in
moving an object 5 feet from to 

37. Computing Work A wagon is pulled horizontally by
exerting a force of 20 pounds on the handle at an angle of
30° with the horizontal. How much work is done in moving
the wagon 100 feet?

38. Find the acute angle that a constant unit force vector makes
with the positive x-axis if the work done by the force in
moving a particle from to equals 2.

39. Prove the distributive property:

40. Prove property (5),
41. If v is a unit vector and the angle between v and i is show

that 
42. Suppose that v and w are unit vectors. If the angle between

v and i is and that between w and i is use the idea of the
dot product to prove that

43. Show that the projection of v onto i is In fact, show
that we can always write a vector v as

v = 1v # i2i + 1v # j2j
1v # i2i.

cos1a - b2 = cos a cos b + sin a sin b
v # w

b,a

v = cos ai + sin aj.
a,

0 # v = 0.

u # 1v + w2 = u # v + u # w

14, 0210, 02

15, 02.10, 02

12, 02.10, 02

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 627



628 CHAPTER 8 Polar Coordinates; Vectors

44. (a) If u and v have the same magnitude, show that 
and are orthogonal.

(b) Use this to prove that an angle inscribed in a semicircle
is a right angle (see the figure).

u

v�v

u - v
u + v 45. Let v and w denote two nonzero vectors. Show that the

vector is orthogonal to w if 

46. Let v and w denote two nonzero vectors. Show that the
vectors and are orthogonal.

47. In the definition of work given in this section, what is the
work done if F is orthogonal to 

48. Prove the polarization identity,

7u + v 72 - 7u - v 72 = 41u # v2

AB 
!

?

7w 7v - 7v 7w7w 7v + 7v 7w

a =

v # w
7w 72 .v - aw

Discussion and Writing
49. Create an application different from any found in the text that requires the dot product.

‘Are You Prepared?’ Answer
1. c2

= a2
+ b2

- 2ab cos g

8.6 Vectors in Space
PREPARING FOR THIS SECTION Before getting started, review the following:

• Distance Formula (Section 1.1, p. 5)

Now work the ‘Are You Prepared?’ problem on page 637.

OBJECTIVES 1 Find the Distance between Two Points in Space

2 Find Position Vectors in Space

3 Perform Operations on Vectors

4 Find the Dot Product

5 Find the Angle between Two Vectors

6 Find the Direction Angles of a Vector

Rectangular Coordinates in Space
In the plane, each point is associated with an ordered pair of real numbers. In space,
each point is associated with an ordered triple of real numbers. Through a fixed
point, called the origin O, draw three mutually perpendicular lines, the x-axis, the
y-axis, and the z-axis. On each of these axes, select an appropriate scale and the pos-
itive direction. See Figure 73.

The direction chosen for the positive z-axis in Figure 73 makes the system
right-handed. This conforms to the right-hand rule, which states that if the index
finger of the right hand points in the direction of the positive x-axis and the mid-
dle finger points in the direction of the positive y-axis then the thumb will point in
the direction of the positive z-axis. See Figure 74.

�2

2

4

2

�2

�2

4

2
4

O
y

x

z

Figure 73
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We associate with each point P an ordered triple of real numbers, the
coordinates of P. For example, the point is located by starting at the origin
and moving 2 units along the positive x-axis, 3 units in the direction of the positive
y-axis, and 4 units in the direction of the positive z-axis. See Figure 75.

Figure 75 also shows the location of the points 
, and Points of the form lie on the x-axis, while points of

the form and lie on the y-axis and z-axis, respectively. Points of the
form lie in a plane, called the xy-plane. Its equation is Similarly,
points of the form lie in the xz-plane (equation ) and points of the
form lie in the yz-plane (equation ). See Figure 76(a). By extension of
these ideas, all points obeying the equation will lie in a plane parallel to and 
3 units above the xy-plane. The equation represents a plane parallel to the
xz-plane and 4 units to the right of the plane See Figure 76(b).y = 0.

y = 4
z = 3

x = 010, y, z2 y = 01x, 0, z2 z = 0.1x, y, 02 10, 0, z210, y, 02 1x, 0, 0212, 3, 42.12, 3, 02 10, 0, 42,12, 0, 02, 10, 3, 02,

12, 3, 42 1x, y, z2

N O W W O R K P R O B L E M 9 .

O

y

x

z

Figure 74

2

4

2

(2, 0, 0)

(0, 0, 4)

(2, 3, 4)

(0, 3, 0)

(2, 3, 0)

4

6

8

2
4 y

x

z

Figure 75

3

Plane z � 3

Plane y � 4

4

(b)

y

x

z

x � 0
yz-plane

z � 0
xy-plane

y � 0
xz-plane

(a)

y

x

zFigure 76
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✓1 Find the Distance between Two Points in Space
The formula for the distance between two points in space is an extension of the Dis-
tance Formula for points in the plane given in Chapter 1.

Theorem Distance Formula in Space

If and are two points in space, the distance d
from to is

(1)

The proof, which we omit, utilizes a double application of the Pythagorean
Theorem.

Using the Distance Formula

Find the distance from to 

Solution �

N O W W O R K P R O B L E M 1 5 .

✓2 Find Position Vectors in Space
To represent vectors in space, we introduce the unit vectors i, j, and k whose direc-
tions are along the positive x-axis, positive y-axis, and positive z-axis, respectively. If
v is a vector with initial point at the origin O and terminal point at 
then we can represent v in terms of the vectors i, j, and k as

See Figure 77.
The scalars a, b, and c are called the components of the vector

with a being the component in the direction i, b the component in
the direction j, and c the component in the direction k.

A vector whose initial point is at the origin is called a position vector. The next
result states that any vector whose initial point is not at the origin is equal to a
unique position vector.

Theorem Suppose that v is a vector with initial point not 

necessarily the origin, and terminal point If then v
is equal to the position vector

(2)

Figure 78 illustrates this result.

v = 1x2 - x12i + 1y2 - y12j + 1z2 - z12k

v = P1P2

!

 
,P2 = 1x2 , y2 , z22.

P1 = 1x1 , y1 , z12,

v = ai + bj + ck,

v = ai + bj + ck

P = 1a, b, c2,

d = 434 - 1-1242 + 3-2 - 342 + 35 - 242 = 225 + 25 + 9 = 259

P2 = 14, -2, 52.P1 = 1-1, 3, 22
EXAMPLE 1

d = 41x2 - x122 + 1y2 - y122 + 1z2 - z122
P2P1

P2 = 1x2 , y2 , z22P1 = 1x1 , y1 , z12

y

x

z

v � ai � bj � ck
k

ji 

P � (a, b, c)

O

Figure 77
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y

x

z

v � P1P2 � (x2 � x1)i � (y2 � y1)j � (z2 � z1)k

P2 � (x2, y2, z2)P1 � (x1, y1, z1)

O

Figure 78

Finding a Position Vector

Find the position vector of the vector if and 

Solution By equation (2), the position vector equal to v is

�

N O W W O R K P R O B L E M 2 9 .

✓3 Perform Operations on Vectors
Next, we define equality, addition, subtraction, scalar product, and magnitude in
terms of the components of a vector.

Let and be two vectors, and let be
a scalar. Then

These definitions are compatible with the geometric ones given earlier in
Section 8.4.

Adding and Subtracting Vectors

If and find:

(a) (b)

Solution (a)

(b)

� = - i + 7j - 7k
 = 12 - 32i + 33 - 1-424j + 3-2 - 54k

 v - w = 12i + 3j - 2k2 - 13i - 4j + 5k2
 = 5i - j + 3k
 = 12 + 32i + 13 - 42j + 1-2 + 52k

 v + w = 12i + 3j - 2k2 + 13i - 4j + 5k2
v - wv + w

w = 3i - 4j + 5k,v = 2i + 3j - 2k

EXAMPLE 3

 7v 7 = 3a2
1 + b2

1 + c2
1

 av = 1aa12i + 1ab12j + 1ac12k
 v - w = 1a1 - a22i + 1b1 - b22j + 1c1 - c22k
 v + w = 1a1 + a22i + 1b1 + b22j + 1c1 + c22k

 v = w if and only if a1 = a2 , b1 = b2 , and c1 = c2

aw = a2 i + b2 j + c2 kv = a1 i + b1 j + c1 k

v = 34 - 1-124i + 16 - 22j + 12 - 32k = 5i + 4j - k

P2 = 14, 6, 22.P1 = 1-1, 2, 32v = P1 P2 
!

EXAMPLE 2
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632 CHAPTER 8 Polar Coordinates; Vectors

Finding Scalar Products and Magnitudes

If and find:

(a) 3v (b) (c)

Solution (a)

(b)

(c) �

N O W W O R K P R O B L E M S 3 3  A N D 3 9 .

Recall that a unit vector u is one for which In many applications, it is use-
ful to be able to find a unit vector u that has the same direction as a given vector v.

Theorem Unit Vector in the Direction of v

For any nonzero vector v, the vector

is a unit vector that has the same direction as v.

As a consequence of this theorem, if u is a unit vector in the same direction as a
vector v, then v may be expressed as

This way of expressing a vector is useful in many applications.

Finding a Unit Vector

Find the unit vector in the same direction as 

Solution We find first.

Now we multiply v by the scalar The result is the unit vector

�

N O W W O R K P R O B L E M 4 7 .

✓4 Find the Dot Product
The definition of dot product is an extension of the definition given for vectors in
the plane.

If and are two vectors, the dot prod-
uct is defined as

(3)v # w = a1 a2 + b1 b2 + c1 c2

v # w
w = a2 i + b2 j + c2 kv = a1 i + b1 j + c1 k

u =

v
7v 7 =

2i - 3j - 6k
7

=

2
7

 i -

3
7

 j -

6
7

 k

1
7v 7 =

1
7

.

7v 7 = 72i - 3j - 6k 7 = 24 + 9 + 36 = 249 = 7

7v 7
v = 2i - 3j - 6k.

EXAMPLE 5

v = 7v 7u

u =

v
7v 7

7u 7 = 1.

7v 7 = 72i + 3j - 2k 7 = 422
+ 32

+ 1-222 = 217

 = 4i + 6j - 4k - 9i + 12j - 15k = -5i + 18j - 19k
 2v - 3w = 212i + 3j - 2k2 - 313i - 4j + 5k2
3v = 312i + 3j - 2k2 = 6i + 9j - 6k

7v 72v - 3w

w = 3i - 4j + 5k,v = 2i + 3j - 2k

EXAMPLE 4
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Finding Dot Products

If and find:

(a) (b) (c)
(d) (e) (f)

Solution (a)

(b)

(c)

(d)

(e)

(f) �

The dot product in space has the same properties as the dot product in the plane.

Theorem Properties of the Dot Product
If u, v, and w are vectors, then

Commutative Property

Distributive Property

✓5 Find the Angle Between Two Vectors
The angle between two vectors in space follows the same formula as for two vec-
tors in the plane.

Theorem Angle between Vectors

If u and v are two nonzero vectors, the angle between u and v is
determined by the formula

(4)

Finding the Angle between Two Vectors

Find the angle between and 

Solution We compute the quantities and 

 7v 7 = 422
+ 52

+ 1-122 = 230

 7u 7 = 422
+ 1-322 + 62

= 249 = 7

 u # v = 2122 + 1-32152 + 61-12 = -17

7v 7 .u # v, 7u 7 ,
v = 2i + 5j - k.u = 2i - 3j + 6ku

UEXAMPLE 7

cos u =

u # v
7u 7  7v 7

u, 0 … u … p,

u

 0 # v = 0

 v # v = 7v 72
u # 1v + w2 = u # v + u # w

u # v = v # u

7w 7 = 452
+ 32

+ 1-122 = 235

7v 7 = 422
+ 1-322 + 62

= 249 = 7

w # w = 5152 + 3132 + 1-121-12 = 35

v # v = 2122 + 1-321-32 + 6162 = 49

w # v = 5122 + 31-32 + 1-12162 = -5

v # w = 2152 + 1-323 + 61-12 = -5

7w 77v 7w # w
v # vw # vv # w

w = 5i + 3j - k,v = 2i - 3j + 6k

EXAMPLE 6
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634 CHAPTER 8 Polar Coordinates; Vectors

By formula (4), if is the angle between u and v, then

We find that �

N O W W O R K P R O B L E M 5 1 .

✓6 Find the Direction Angles of a Vector
A nonzero vector v in space can be described by specifying its magnitude and its
three direction angles and These direction angles are defined as

See Figure 79.

 g = angle between v and k, the positive z-axis, 0 … g … p

 b = angle between v and j, the positive y-axis, 0 … b … p

 a = angle between v and i, the positive x-axis, 0 … a … p

g.a, b,

u L 116.3°.

cos u =

u # v
7u 7  7v 7 =

-17

7230
L -0.443

u

Our first goal is to find expressions for and in terms of the components
of a vector. Let denote a nonzero vector. The angle between v
and i, the positive x-axis, obeys

Similarly,

Since we have the following result:7v 7 = 3a2
+ b2

+ c2 ,

cos b =

b
7v 7  cos g =

c
7v 7

cos a =

v # i
7v 7  7 i 7 =

a
7v 7

av = ai + bj + ck
ga, b,

y

x

z

0 ≤ � ≤ �, 0 ≤ � ≤ �, 0 ≤� ≤ �

�
�

�

C � (0, 0, c)

v

A � (a, 0, 0)

P � (a, b, c)

B � (0, b, 0)

Figure 79
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Theorem Direction Angles

If is a nonzero vector in space, the direction angles and
obey

(5)

The numbers and are called the direction cosines of the vec-
tor v. They play the same role in space as slope does in the plane.

Finding the Direction Angles of a Vector

Find the direction angles of 

Solution

Using the formulas in equation (5), we have

�

Theorem Property of the Direction Cosines

If and are the direction angles of a nonzero vector v in space, then

(6)

The proof is a direct consequence of the equations in (5).
Based on equation (6), when two direction cosines are known, the third is de-

termined up to its sign. Knowing two direction cosines is not sufficient to uniquely
determine the direction of a vector in space.

Finding the Direction Angle of a Vector

The vector v makes an angle of with the positive x-axis, an angle of 

with the positive y-axis, and an acute angle with the positive z-axis. Find g.g

b =

p

3
a =

p

3

EXAMPLE 9

cos2 a + cos2 b + cos2 g = 1

ga, b,

 a L 115.4°  b L 73.4°  g L 149.0°

 cos a =

-3
7
   cos b =

2
7
   cos g =

-6
7

7v 7 = 41-322 + 22
+ 1-622 = 249 = 7

v = -3i + 2j - 6k.

EXAMPLE 8

cos gcos a, cos b,

cos g =

c

3a2
+ b2

+ c2
=

c
7v 7

cos a =

a

3a2
+ b2

+ c2
=

a
7v 7  cos b =

b

3a2
+ b2

+ c2
=

b
7v 7

g

a, b,v = ai + bj + ck
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636 CHAPTER 8 Polar Coordinates; Vectors

Solution By equation (6), we have

or

or

Since we are requiring that be acute, the answer is �

The direction cosines of a vector give information about only the direction of
the vector; they provide no information about its magnitude. For example, any

vector parallel to the xy-plane and making an angle of radian with the positive x-
axis and y-axis has direction cosines

However, if the direction angles and the magnitude of a vector are known, then the
vector is uniquely determined.

Writing a Vector in Terms of Its Magnitude 
and Direction Cosines

Show that any nonzero vector v in space can be written in terms of its magnitude
and direction cosines as

(7)

Solution Let From the equations in (5), we see that

Substituting, we find that

�

N O W W O R K P R O B L E M 5 9 .

Example 10 shows that the direction cosines of a vector v are also the compo-
nents of the unit vector in the direction of v.

 = 7v 7 31cos a2i + 1cos b2j + 1cos g2k4
 v = ai + bj + ck = 7v 7 1cos a2i + 7v 7 1cos b2j + 7v 7 1cos g2k

a = 7v 7  cos a b = 7v 7  cos b c = 7v 7  cos g

v = ai + bj + ck.

v = 7v 7 31cos a2i + 1cos b2j + 1cos g2k4

EXAMPLE 10

cos a =

22
2

  cos b =

22
2

  cos g = 0

p

4

g =

p

4
.g

   g =

3p
4

 g =

p

4

 cos g = -  
22
2

 cos g =

22
2

 cos2 g =

1
2

 a1
2
b2

+ a1
2
b2

+ cos2 g = 1

0 6 g 6

p

2
 cos2ap

3
b + cos2ap

3
b + cos2 g = 1
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SECTION 8.6 Vectors in Space 637

‘Are You Prepared?’
Answer is given at the end of these exercises. If you get the wrong answer, read the page listed in red.

1. The distance d from to is __________ (p. 5)

Concepts and Vocabulary

d =P2 = 1x2 , y22P1 = 1x1 , y12

8.6 Assess Your Understanding

2. In space, points of the form lie in a plane called the
__________.

3. If is a vector in space, the scalars a, b, c are
called the __________ of v.

4. The sum of the squares of the direction cosines of a vector
in space add up to __________.

v = ai + bj + ck

1x, y, 02 5. True or False: In space, the dot product of two vectors is a
positive number.

6. True or False: A vector in space may be described by speci-
fying its magnitude and its direction angles.

Skill Building
In Problems 7–14, describe the set of points defined by the equation.

7. 8. 9. 10.

11. 12. 13. and 14. and 

In Problems 15–20, find the distance from to 

15. and 16. and 

17. and 18. and 

19. and 20. and 

In Problems 21–26, opposite vertices of a rectangular box whose edges are parallel to the coordinate axes are given. List the coordinates of
the other six vertices of the box.

21. 22. 23.

24. 25. 26.

In Problems 27–32, the vector v has initial point P and terminal point Q. Write v in the form that is, find its position vector.

27. 28.

29. 30.

31. 32.

In Problems 33–38, find 

33. 34. 35.

36. 37. 38.

In Problems 39–44, find each quantity if and 

39. 40. 41.

42. 43. 44.

In Problems 45–50, find the unit vector having the same direction as v.

45. 46. 47.

48. 49. 50.

In Problems 51–58, find the dot product and the angle between v and w.

51. 52.

53. 54.

55. 56.

57. 58. v = 3i - 4j + k, w = 6i - 8j + 2kv = 3i + 4j + k, w = 6i + 8j + 2k

v = i + 3j + 2k, w = i - j + kv = 3i - j + 2k, w = i + j - k

v = 2i + 2j - k, w = i + 2j + 3kv = 2i + j - 3k, w = i + 2j + 2k

v = i + j, w = - i + j - kv = i - j, w = i + j + k

v # w

v = 2i - j + kv = i + j + kv = -6i + 12j + 4k

v = 3i - 6j - 2kv = -3jv = 5i

7v 7 + 7w 77v 7 - 7w 77v + w 7
7v - w 73v - 2w2v + 3w

w = -2i + 3j - 2k.v = 3i - 5j + 2k

v = 6i + 2j - 2kv = -2i + 3j - 3kv = - i - j + k

v = i - j + kv = -6i + 12j + 4kv = 3i - 6j - 2k

7v 7 .
P = 1-1, 4, -22; Q = 16, 2, 22P = 1-2, -1, 42; Q = 16, -2, 42
P = 1-3, 2, 02; Q = 16, 5, -12P = 13, 2, -12; Q = 15, 6, 02
P = 10, 0, 02; Q = 1-3, -5, 42P = 10, 0, 02; Q = 13, 4, -12

ai + bj + ck;

1-2, -3, 02; 1-6, 7, 121-1, 0, 22; 14, 2, 5215, 6, 12; 13, 8, 22
11, 2, 32; 13, 4, 5210, 0, 02; 14, 2, 2210, 0, 02; 12, 1, 32

P2 = 14, 1, -12P1 = 12, -3, -32P2 = 13, 2, 12P1 = 14, -2, -22
P2 = 14, 0, -32P1 = 1-2, 2, 32P2 = 10, -2, 12P1 = 1-1, 2, -32

P2 = 11, -2, 32P1 = 10, 0, 02P2 = 14, 1, 22P1 = 10, 0, 02
P2 .P1

z = 1x = 3y = 2x = 1z = -3x = -4

y = 3z = 2x = 0y = 0

1x, y, z2
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638 CHAPTER 8 Polar Coordinates; Vectors

In Problems 59–66, find the direction angles of each vector. Write each vector in the form of equation (7).

59. 60. 61. 62.

63. 64. 65. 66.

Applications and Extensions

v = 2i + 3j - 4kv = 3i - 5j + 2kv = j + kv = i + j

v = i - j - kv = i + j + kv = -6i + 12j + 4kv = 3i - 6j - 2k

67. The Sphere In space, the collection of all points that are
the same distance from some fixed point is called a sphere.
See the illustration. The constant distance is called the
radius, and the fixed point is the center of the sphere. Show
that the equation of a sphere with center at and
radius r is

[Hint: Use the Distance Formula (1).]

1x - x022 + 1y - y022 + 1z - z022 = r2

1x0 , y0 , z02

y
x

z

P � (x, y, z )

P0 � (x0, y0, z0)

r

In Problems 68–70, find the equation of a sphere with radius r and center 

68. 69. 70.

In Problems 71–76, find the radius and center of each sphere.

[Hint: Complete the square in each variable.]

71. 72.

73. 74.

75. 76.

The work W done by a constant force F in moving an object from a point A in space to a point B in space is defined as Use
this definition in Problems 77–79.

W = F # AB 
!

.

3x2
+ 3y2

+ 3z2
+ 6x - 6y = 32x2

+ 2y2
+ 2z2

- 8x + 4z = -1

x2
+ y2

+ z2
- 4x = 0x2

+ y2
+ z2

- 4x + 4y + 2z = 0

x2
+ y2

+ z2
+ 2x - 2z = -1x2

+ y2
+ z2

+ 2x - 2y = 2

r = 3; P0 = 1-1, 1, 22r = 2; P0 = 11, 2, 22r = 1; P0 = 13, 1, 12
P0 .

77. Work Find the work done by a force of 3 newtons acting
in the direction in moving an object 2 meters
from to 10, 2, 02.10, 0, 02

2i + j + 2k
78. Work Find the work done by a force of 1 newton acting in

the direction in moving an object 3 meters
from to 11, 2, 22.10, 0, 02

2i + 2j + k

8.7 The Cross Product

OBJECTIVES 1 Find the Cross Product of Two Vectors

2 Know Algebraic Properties of the Cross Product

3 Know Geometric Properties of the Cross Product

4 Find a Vector Orthogonal to Two Given Vectors

5 Find the Area of a Parallelogram

✓1 Find the Cross Product of Two Vectors
For vectors in space, and only for vectors in space, a second product of two vectors is de-
fined, called the cross product.The cross product of two vectors in space is, in fact, also a
vector that has applications in both geometry and physics.

79. Work Find the work done in moving an object along a vector if the applied force is 

‘Are You Prepared?’ Answer
1. d = 41x2 - x122 + 1y2 - y122

F = 2i - j - k.u = 3i + 2j - 5k
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SECTION 8.7 The Cross Product 639

*Determinants are discussed in detail in Section 10.3.

If and are two vectors in space, the
cross product is defined as the vector

(1)

Notice that the cross product of two vectors is a vector. Because of this, it
is sometimes referred to as the vector product.

Finding Cross Products Using Equation (1)

If and then an application of equation (1) gives

�

Determinants* may be used as an aid in computing cross products.
A 2 by 2 determinant, symbolized by

has the value that is,

A 3 by 3 determinant has the value

Evaluating Determinants

(a)

(b)

�

N O W W O R K P R O B L E M 7 .

The cross product of the vectors and 
that is,

v * w = 1b1 c2 - b2 c12i - 1a1 c2 - a2 c12j + 1a1 b2 - a2 b12k
w = a2 i + b2 j + c2 k,v = a1 i + b1 j + c1 k

 = -A - B + C

 = 19 - 102A - 16 - 52B + 14 - 32C

 3A2
1

B

3
2

C

5
3

3 = ` 3
2

5
3
`A - ` 2

1
5
3
`B + ` 2

1
3
2
`C

` 2
1

3
2
` = 2 # 2 - 1 # 3 = 4 - 3 = 1

EXAMPLE 2

3Aa1

a2

B

b1

b2

C

c1

c2

3 = ` b1

b2

c1

c2
`A - ` a1

a2

c1

c2
`B + ` a1

a2

b1

b2
`C

` a1

a2

b1

b2
` = a1 b2 - a2 b1

a1 b2 - a2 b1 ;

` a1

a2

b1

b2
`

 = - i - j + k

 = 19 - 102i - 16 - 52j + 14 - 32k
 v * w = 13 # 3 - 2 # 52i - 12 # 3 - 1 # 52j + 12 # 2 - 1 # 32k

w = i + 2j + 3k,v = 2i + 3j + 5k

EXAMPLE 1

v * w

v * w = 1b1 c2 - b2 c12i - 1a1 c2 - a2 c12j + 1a1 b2 - a2 b12k
v * w

w = a2 i + b2 j + c2 kv = a1 i + b1 j + c1 k
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640 CHAPTER 8 Polar Coordinates; Vectors

may be written symbolically using determinants as

Using Determinants to Find Cross Products

If and find:

(a) (b) (c) (d)

Solution (a)

(b)

(c)

(d)

�

N O W W O R K P R O B L E M 1 5 .

✓2 Know Algebraic Properties of the Cross Product
Notice in Examples 3(a) and 3(b) that and are negatives of one anoth-
er. From Examples 3(c) and 3(d), we might conjecture that the cross product of a
vector with itself is the zero vector.These and other algebraic properties of the cross
product are given next.

Theorem Algebraic Properties of the Cross Product

If u, v, and w are vectors in space and if is a scalar, then

(2)

(3)

(4)

(5)

Proof We will prove properties (2) and (4) here and leave properties (3) and (5)
as exercises (see Problems 55 and 56).

 u * 1v + w2 = 1u * v2 + 1u * w2
 a1u * v2 = 1au2 * v = u * 1av2

 u * v = -1v * u2
 u * u = 0

a

w * vv * w

 = ` 2
2

3
3
` i - ` 1

1
3
3
` j + ` 1

1
2
2
` k = 0i - 0j + 0k = 0

 w * w = 3 i1
1

j
2
2

k
3
3

3
 = ` 3

3
5
5
` i - ` 2

2
5
5
` j + ` 2

2
3
3
` k = 0i - 0j + 0k = 0

 v * v = 3 i2
2

j
3
3

k
5
5

3
w * v = 3 i1

2

j
2
3

k
3
5

3 = ` 2
3

3
5
` i - ` 1

2
3
5
` j + ` 1

2
2
3
` k = i + j - k

v * w = 3 i2
1

j
3
2

k
5
3

3 = ` 3
2

5
3
` i - ` 2

1
5
3
` j + ` 2

1
3
2
` k = - i - j + k

w * wv * vw * vv * w

w = i + 2j + 3k,v = 2i + 3j + 5k

EXAMPLE 3

v * w = 3 i
a1

a2

j
b1

b2

k
c1

c2

3 = ` b1

b2

c1

c2
` i - ` a1

a2

c1

c2
` j + ` a1

a2

b1

b2
` k
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To prove property (2), we let Then

To prove property (4), we let and 
Then

Apply (1).

(6)

Since we have

(7)

Based on equations (6) and (7), the first part of property (4) follows. The second
part can be proved in like fashion. ■

N O W W O R K P R O B L E M 1 7 .

Know Geometric Properties of the Cross Product✓3
The cross product has several interesting geometric properties.

Theorem Geometric Properties of the Cross Product

Let u and v be vectors in space.

(8)

(9)

where is the angle between u and v.

(10)

(11)

Proof of Property (8) Let and Then

Now we compute the dot product 

Since two vectors are orthogonal if their dot product is zero, it follows that u and
are orthogonal. Similarly, so v and  are orthogonal. ■u * vv # 1u * v2 = 0,u * v

 = a11b1 c2 - b2 c12 - b11a1 c2 - a2 c12 + c11a1 b2 - a2 b12 = 0

 u # 1u * v2 = 1a1 i + b1 j + c1 k2 # 31b1 c2 - b2 c12i - 1a1 c2 - a2 c12j + 1a1 b2 - a2 b12k4
u # 1u * v2.

u * v = 1b1 c2 - b2 c12i - 1a1 c2 - a2 c12j + 1a1 b2 - a2 b12k
v = a2 i + b2 j + c2 k.u = a1 i + b1 j + c1 k

u * v = 0 if and only if u and v are parallel.

having u Z 0 and v Z 0 as adjacent sides.
7u * v 7  is the area of the parallelogram

u

7u * v 7 = 7u 7  7v 7  sin u,

u * v is orthogonal to both u and v.

 = a1b1 c2 - b2 c12i - a1a1 c2 - a2 c12j + a1a1 b2 - a2 b12k
 1au2 * v = 1ab1 c2 - b2ac12i - 1aa1 c2 - a2ac12j + 1aa1 b2 - a2ab12k
au = aa1 i + ab1 j + ac1 k,

 = a1b1 c2 - b2 c12i - a1a1 c2 - a2 c12j + a1a1 b2 - a2 b12k
 q

 a1u * v2 = a31b1 c2 - b2 c12i - 1a1 c2 - a2 c12j + 1a1 b2 - a2 b12k4
v = a2 i + b2 j + c2 k.u = a1 i + b1 j + c1 k

 = 0i - 0j + 0k = 0

 u * u = 3 i
a1

a1

j
b1

b1

k
c1

c1

3 = ` b1

b1

c1

c1
` i - ` a1

a1

c1

c1
` j + ` a1

a1

b1

b1
` k

u = a1 i + b1 j + c1 k.
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✓4 Find a Vector Orthogonal to Two Given Vectors
As long as the vectors u and v are not parallel, they will form a plane in space. See
Figure 80. Based on property (8), the vector is normal to this plane. As
Figure 80 illustrates, there are two vectors normal to the plane containing u and v. It
can be shown that the vector is the one determined by the thumb of the right
hand when the other fingers of the right hand are cupped so that they point in a di-
rection from u to v. See Figure 81.*

u * v

u * v

Finding a Vector Orthogonal to Two Given Vectors

Find a vector that is orthogonal to and 

Solution Based on property (8), such a vector is 

The vector is orthogonal to both u and v.

CHECK: Two vectors are orthogonal if their dot product is zero.

�

N O W W O R K P R O B L E M 4 1 .

The proof of property (9) is left as an exercise. See Problem 58.

Proof of Property (10) Suppose that u and v are adjacent sides of a parallelo-
gram. See Figure 82. Then the lengths of these sides are and If is the angle
between u and v, then the height of the parallelogram is and its area is

Property (9) ■
 q

 Area of parallelogram = Base * Height = 7u 7 3 7v 7  sin u4 = 7u * v 7
7v 7  sin u

u7v 7 .7u 7

 v # 1- i + 2j + 7k2 = 1- i + 3j - k2 # 1- i + 2j + 7k2 = 1 + 6 - 7 = 0

 u # 1- i + 2j + 7k2 = 13i - 2j + k2 # 1- i + 2j + 7k2 = -3 - 4 + 7 = 0

- i + 2j + 7k

u * v = 3 i j k
3 -2 1

-1 3 -1

3 = 12 - 32i - 3-3 - 1-124j + 19 - 22k = - i + 2j + 7k

u * v.

v = - i + 3j - k.u = 3i - 2j + k

EXAMPLE 4

v

u

θ

Figure 82

u u � v

v

Figure 81

u

v

Figure 80

*This is a consequence of using a right-handed coordinate system.
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✓5 Find the Area of a Parallelogram

Finding the Area of a Parallelogram

Find the area of the parallelogram whose vertices are 
and 

Solution Two adjacent sides of this parallelogram are

Since (Example 4), the area of the parallelogram is

�

N O W W O R K P R O B L E M 4 9 .

Proof of Property (11) The proof requires two parts. If u and v are parallel, then
there is a scalar such that Then

Property (4) Property (2)

If then, by property (9), we have

Since and then we must have so or In either case,
since is the angle between u and v, then u and v are parallel. ■u

u = p.u = 0sin u = 0,v Z 0,u Z 0

7u * v 7 = 7u 7  7v 7  sin u = 0

u * v = 0,

 q q
 u * v = 1av2 * v = a1v * v2 = 0

u = av.a

Area of parallelogram = 7u * v 7 = 21 + 4 + 49 = 254 = 326

u * v = - i + 2j + 7k

u = P1 P2 
!

= 3i - 2j + k and v = P1 P3 
!

= - i + 3j - k

P4 = 12, 1, 02.P3 = 1-1, 3, -12,P2 = 13, -2, 12, P1 = 10, 0, 02,
EXAMPLE 5

Concepts and Vocabulary

8.7 Assess Your Understanding

WARNING:
Not all pairs of vertices give rise 
to a side. For example, is a 
diagonal of the parallelogram since

Also, and
are not adjacent sides; they are

parallel sides. ■

P2P4 
!

P1P3 
!

P1P3 
!

+ P3P4 
!

= P1P4 
!

.

P1P4 
!

1. True or False: If u and v are parallel vectors, then 
2. True or False: For any vector 
3. True or False: If u and v are vectors, then

4. True or False: is a vector that is parallel to both u
and v.

u * v
u * v + v * u = 0.

v, v * v = 0.
u * v = 0. 5. True or False: where is the angle

between u and v.
6. True or False: The area of the parallelogram having u and v

as adjacent sides is the magnitude of the cross product of u
and v.

u7u * v 7 = 7u 7  7v 7  cos u,

Skill Building
In Problems 7–14, find the value of each determinant.

7. 8. 9. 10.

11. 12. 13. 14. 3A1
0

B

-2
2

C

-3
-2

33 A

-1
5

B

3
0

C

5
-2

33A0
3

B

2
1

C

4
3

33A2
1

B

1
3

C

4
1

3
` -4

5
0
3
`` 6

-2
5

-1
`` -2

2
5

-3
`` 3

1
4
2
`
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644 CHAPTER 8 Polar Coordinates; Vectors

In Problems 15–22, find (a) (b) (c) and (d) v * v.w * w,w * v,v * w,

49.

P4 = 1-2, 4, 12
P1 = 11, 1, 22, P2 = 11, 2, 32, P3 = 1-2, 3, 02, 50.

P4 = 1-2, 6, 12
P1 = 12, 1, 12, P2 = 12, 3, 12, P3 = 1-2, 4, 12,

In Problems 23–44, use the vectors u, v, and w given below to find each expression.

23. 24. 25. 26.

27. 28. 29. 30.

31. 32. 33. 34.

35. 36. 37. 38.

39. 40.

41. Find a vector orthogonal to both u and v. 42. Find a vector orthogonal to both u and w.

43. Find a vector orthogonal to both u and 44. Find a vector orthogonal to both u and 

In Problems 45–48, find the area of the parallelogram with one corner at and adjacent sides and 

45. 46.

47. 48.

In Problems 49–52, find the area of the parallelogram with vertices and P4 .P1 , P2 , P3 ,

P1 = 1-2, 0, 22, P2 = 12, 1, -12, P3 = 12, -1, 22P1 = 11, 2, 02, P2 = 1-2, 3, 42, P3 = 10, -2, 32
P1 = 10, 0, 02, P2 = 12, 3, 12, P3 = 1-2, 4, 12P1 = 10, 0, 02, P2 = 11, 2, 32, P3 = 1-2, 3, 02

P1 P3 
!

.P1 P2 
!

P1

j + k.i + j.

1w * w2 * vu * 1v * v2
1v * u2 # wv # 1u * w21u * v2 # wu # 1v * w2
v # 1v * w2u # 1u * v21-3v2 * wu * 12v2
v * 14w213u2 * vw * wv * v

w * vv * uv * wu * v

u = 2i - 3j + k  v = -3i + 3j + 2k  w = i + j + 3k

15.
 w = 3i - 2j - k
 v = 2i - 3j + k 16.

 w = 3i - 2j - k
 v = - i + 3j + 2k 17.

 w = 2i + j + k
 v = i + j 18.

 w = 3i + 2j + k
 v = i - 4j + 2k

19.
 w = j - k
 v = 2i - j + 2k 20.

 w = i - k
 v = 3i + j + 3k 21.

 w = 4i - 3k
 v = i - j - k 22.

 w = 3j - 2k
 v = 2i - 3j

51.

P4 = 19, -5, 02
P1 = 11, 2, -12, P2 = 14, 2, -32, P3 = 16, -5, 22, 52.

P4 = 1-3, 5, -42
P1 = 1-1, 1, 12, P2 = 1-1, 2, 22, P3 = 1-3, 4, -52,

Applications and Extensions
53. Find a unit vector normal to the plane containing

and w = -2i + j + 3k.v = i + 3j - 2k
54. Find a unit vector normal to the plane containing

and w = -2i - 4j - 3k.v = 2i + 3j - k

55. Prove property (3). 56. Prove property (5).

57. Prove for vectors u and v that

[Hint: Proceed as in the proof of property (4), computing
first the left side and then the right side.]

7u * v 72 = 7u 72 7v 72 - 1u # v22.
58. Prove property (9).

[Hint: Use the result of Problem 57 and the fact that if is the
angle between u and v then ]u # v = 7u 7  7v 7  cos u.

u

59. Show that if u and v are orthogonal then

7u * v 7 = 7u 7  7v 7 .
60. Show that if u and v are orthogonal unit vectors then so is 

a unit vector.u * v

Discussion and Writing
61. If and what, if anything, can you conclude about u and v?u * v = 0,u # v = 0
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Things to Know

Polar Coordinates (p. 572–575)

Relationship between polar
coordinates and

rectangular coordinates 

(pp. 575 and 578)

Polar form of a complex If then 
number (p. 601) where 

De Moivre’s Theorem (p. 603) If then 
where is a positive integer.

nth root of a complex number

(p. 605)

where is an integer.

Vector (pp. 608–610) Quantity having magnitude and direction; equivalent to a directed line segment 

Position vector (p. 611) Vector whose initial point is at the origin

Unit vector (pp. 611 and 632) Vector whose magnitude is 1

Dot product (pp. 620 and 632) If and then 

If and then 

Angle between two nonzero
vectors u and v (pp. 621 and 633)

Direction angles of a If then 
vector in space (p. 636)

where 

Cross product (p. 639) If and 

then 

Area of a parallelogram (p. 641) where is the angle between u and v.

Objectives
Section You should be able to Review Exercises

8.1 ✓1 Plot points using polar coordinates (p. 572) 1–6

✓2 Convert from polar coordinates to rectangular coordinates (p. 575) 1–6

✓3 Convert from rectangular coordinates to polar coordinates (p. 576) 7–12

8.2 ✓1 Graph and identify polar equations by converting to rectangular equations (p. 582) 13–18

✓2 Graph polar equations using a graphing utility (p. 583) 13–24

✓3 Test polar equations for symmetry (p. 587) 19–24

✓4 Graph polar equations by plotting points (p. 588) 19–24

8.3 ✓1 Convert a complex number from rectangular form to polar form (p. 601) 25–28

✓2 Plot points in the complex plane (p. 601) 29–34

✓3 Find products and quotients of complex numbers in polar form (p. 602) 35–40

Á

u7u * v 7 = 7u 7  7v 7  sin u,

v * w = 3b1 c2 - b2 c14i - 3a1 c2 - a2 c14j + 3a1 b2 - a2 b14k.

w = a2 i + b2 j + c2 k,v = a1 i + b1 j + c1 k

cos a =

a
7v 7 , cos b =

b
7v 7 , cos g =

c
7v 7 .

v = 7v 7 31cos a2i + 1cos b2j + 1cos g2k4,v = ai + bj + ck,

cos u =

u # v
7u 7  7v 7u

v # w = a1 a2 + b1 b2 + c1 c2 .w = a2 i + b2 j + c2 k2 ,v = a1 i + b1 j + c1 k

v # w = a1 a2 + b1 b2 .w = a2 i + b2 j,v = a1 i + b1 j

 PQ 
!

n Ú 2

z = r1cos u0 + i sin u02
1n z = 1n rBcos¢ u0

n
+

2kp

n
≤ + i sin¢ u0

n
+

2kp

n
≤ R , k = 0, Á , n - 1,

n Ú 1
zn

= rn3cos1nu2 + i sin1nu24,z = r1cos u + i sin u2,
r = ƒz ƒ = 3x2

+ y2, sin u =

y

r
, cos u =

x

r
, 0 … u 6 2p.

z = r1cos u + i sin u2,z = x + yi,

r2
= x2

+ y2, tan u =

y

x
, x Z 01x, y2

1r, u2
x = r cos u, y = r sin u

Chapter Review
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646 CHAPTER 8 Polar Coordinates; Vectors

✓4 Use De Moivre’s Theorem (p. 603) 41–48

✓5 Find complex roots (p. 604) 49–50

8.4 ✓1 Graph vectors (p. 610) 51–54

✓2 Find a position vector (p. 611) 55–58

✓3 Add and subtract vectors (p. 613) 59, 60

✓4 Find a scalar product and the magnitude of a vector (p. 614) 61–66

✓5 Find a unit vector (p. 614) 67, 68

✓6 Find a vector from its direction and magnitude (p. 615) 69, 70

✓7 Work with objects in static equilibrium (p. 616) 111

8.5 ✓1 Find the dot product of two vectors (p. 620) 85–88

✓2 Find the angle between two vectors (p. 621) 85–88, 109, 110, 112

✓3 Determine whether two vectors are parallel (p. 623) 93–96

✓4 Determine whether two vectors are orthogonal (p. 623) 93–96

✓5 Decompose a vector into two orthogonal vectors (p. 624) 99–102

✓6 Compute work (p. 625) 113

8.6 ✓1 Find the distance between two points in space (p. 630) 71, 72

✓2 Find position vectors in space (p. 630) 73, 74

✓3 Perform operations on vectors (p. 631) 75–80

✓4 Find the dot product (p. 632) 89–92

✓5 Find the angle between two vectors (p. 633) 89–92

✓6 Find the direction angles of a vector (p. 634) 103, 104

8.7 ✓1 Find the cross product of two vectors (p. 638) 81, 82

✓2 Know algebraic properties of the cross product (p. 640) 107, 108

✓3 Know geometric properties of the cross product (p. 641) 105, 106

✓4 Find a vector orthogonal to two given vectors (p. 642) 84

✓5 Find the area of a parallelogram (p. 643) 105, 106

Review Exercises
In Problems 1–6, plot each point given in polar coordinates, and find its rectangular coordinates.

1. 2. 3. 4. 5. 6.

In Problems 7–12, the rectangular coordinates of a point are given. Find two pairs of polar coordinates for each point, one with
and the other with Express in radians.

7. 8. 9. 10. 11. 12.

In Problems 13–18, the letters r and represent polar coordinates. Write each polar equation as an equation in rectangular coordinates
Identify the equation and graph it by hand. Verify your graph using a graphing utility.

13. 14. 15.

16. 17. 18. r2
+ 4r sin u - 8r cos u = 5r cos u + 3r sin u = 6u =

p

4

r = 53r = sin ur = 2 sin u

1x, y2.
u

1-5, 12213, 4212, 0210, -2211, -121-3, 32
ur 6 0.r 7 0

1r, u2

a -4, -  
p

4
ba -3, -  

p

2
ba -1, 

5p
4
ba -2, 

4p
3
ba4, 

2p
3
ba3, 

p

6
b
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In Problems 19–24, sketch by hand the graph of each polar equation. Be sure to test for symmetry.Verify your graph using a graphing utility.

19. 20. 21.

22. 23. 24.

In Problems 25–28, write each complex number in polar form. Express each argument in degrees.

25. 26. 27. 28.

In Problems 29–34, write each complex number in the standard form and plot each in the complex plane.

29. 30. 31.

32. 33. 34.

In Problems 35–40, find z and Leave your answers in polar form.
z

w
.w

0.51cos 160° + i sin 160°20.11cos 350° + i sin 350°24acos 
3p
4

+ i sin 
3p
4
b

3acos 
2p
3

+ i sin 
2p
3
b31cos 60° + i sin 60°221cos 150° + i sin 150°2

a + bi

3 - 2i4 - 3i-23 + i-1 - i

r = 1 - 2 sin ur = 4 - cos ur = 2 + cos u

r = 3 - 3 sin ur = 3 sin ur = 4 cos u

35.
 w = cos 50° + i sin 50°
 z = cos 80° + i sin 80° 36.

 w = cos 85° + i sin 85°
 z = cos 205° + i sin 205° 37.

 w = 2acos 
p

5
+ i sin 

p

5
b

 z = 3acos 
9p
5

+ i sin 
9p
5
b

38.

 w = 3acos 
p

3
+ i sin 

p

3
b

 z = 2acos 
5p
3

+ i sin 
5p
3
b 39.

 w = cos 355° + i sin 355°
 z = 51cos 10° + i sin 10°2 40.

 w = cos 340° + i sin 340°
 z = 41cos 50° + i sin 50°2

In Problems 41–48, write each expression in the standard form 

41. 42.

43. 44.

45. 46.

47. 48.

49. Find all the complex cube roots of 27. 50. Find all the complex fourth roots of 

In Problems 51–54, use the figure to graph each of the following:

51. 52.

53. 54. 5v - 2w2u + 3v

v + wu + v

-16.

11 - 2i2413 + 4i24
12 - 2i28A1 - 23 i B6
c2acos 

5p
16

+ i sin 
5p
16
b d4c22 acos 

5p
8

+ i sin 
5p
8
b d4

321cos 50° + i sin 50°243331cos 20° + i sin 20°243
a + bi.

In Problems 55–58, the vector v is represented by the directed line segment Write v in the form and find 

55. 56.

57. 58.

In Problems 59–68, use the vectors and to find:

59. 60. 61. 62.

63. 64. 65. 66.

67. Find a unit vector in the same direction as v. 68. Find a unit vector in the opposite direction of w.

72v 7 - 3 7w 77v 7 + 7w 77v + w 77v 7
-v + 2w4v - 3wv - wv + w

w = 4i - 3jv = -2i + j

P = 13, -42; Q = 1-2, 02P = 10, -22; Q = 1-1, 12
P = 1-3, 12; Q = 14, -22P = 11, -22; Q = 13, -62

7v 7 .ai + bjPQ 
!

.

v
wu
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69. Find the vector v in the xy-plane with magnitude 3 if the
angle between v and i is 60°.

70. Find the vector v in the xy-plane with magnitude 5 if the
angle between v and i is 150°.

73. A vector v has initial point and terminal
point Write v in the 
form v = ai + bj + ck.

Q = 14, -2, 12.
P = 11, 3, -22 74. A vector v has initial point and 

terminal point Write v in the 
form v = ai + bj + ck.

Q = 16, -5, -12.
P = 10, -4, 32

In Problems 75–84, use the vectors and to find each expression.

75. 76. 77. 78.

79. 80. 81. 82. v # 1v * w2v * w7v 7 + 7w 77v 7 - 7w 7
7v + w 77v - w 7-v + 2w4v - 3w

w = -3i + 2j - kv = 3i + j - 2k

In Problems 85–92, find the dot product and the angle between v and w.

85. 86.

87. 88.

89. 90.

91. 92.

In Problems 93–98, determine whether v and w are parallel, orthogonal, or neither.

93. 94. 95.

96. 97. 98. v = -4i + 2j; w = 2i + 4jv = 3i - 2j; w = 4i + 6jv = -2i + 2j; w = -3i + 2j

v = 3i - 4j; w = -3i + 4jv = -2i - j; w = 2i + jv = 2i + 3j; w = -4i - 6j

v = - i - 2j + 3k, w = 5i + j + kv = 4i - j + 2k, w = i - 2j - 3k

v = i - j + k, w = 2i + j + kv = i + j + k, w = i - j + k

v = i + 4j, w = 3i - 2jv = i - 3j, w = - i + j

v = 3i - j, w = i + jv = -2i + j, w = 4i - 3j
v # w

99.

100.

101. Decompose into two vectors, one parallel to
the other perpendicular to w.

102. Decompose into two vectors, one parallel to
the other perpendicular to w.

103. Find the direction angles of the vector 

104. Find the direction angles of the vector 

105. Find the area of the parallelogram with vertices
and

106. Find the area of the parallelogram with vertices
and

107. If what is 

108. Suppose that What is 

109. Actual Speed and Direction of a Swimmer A swimmer
can maintain a constant speed of 5 miles per hour. If the
swimmer heads directly across a river that has a current

u * v?u = 3v.

v * u?u * v = 2i - 3j + k,

P4 = 13, 3, 42.
P1 = 12, -1, 12, P2 = 15, 1, 42, P3 = 10, 1, 12,
P4 = 17, 7, 52.
P1 = 11, 1, 12, P2 = 12, 3, 42, P3 = 16, 5, 22,

v = i - j + 2k.

v = 3i - 4j + 2k.

w = 3i - j.
v = - i + 2j

w = 3i + j,
v = 2i + 3j

v = -3i + 2j; w = -2i + j

v = 2i + j; w = -4i + 3j moving at the rate of 2 miles per hour, what is the actual
speed of the swimmer? (See the figure.) If the river is 1 mile
wide, how far downstream will the swimmer end up from
the point directly across the river from the starting point?

110. Actual Speed and Direction of an Airplane An airplane
has an airspeed of 500 kilometers per hour in a northerly di-
rection. The wind velocity is 60 kilometers per hour in a
southeasterly direction. Find the actual speed and direction
of the plane relative to the ground.

Current

Swimmer's
direction

Direction
of swimmer
due to current

71. Find the distance from to P2 = 14, -2, 12.P1 = 11, 3, -22 72. Find the distance from to P2 = 16, -5, -12.P1 = 10, -4, 32

83. Find a unit vector in the same direction as v and then in the
opposite direction of v.

84. Find a unit vector orthogonal to both v and w.

In Problems 99 and 100, decompose v into two vectors, one parallel to w and the other orthogonal to w.
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In Problems 1–3, plot each point given in polar coordinates.

1. 2. 3.

4. Convert from rectangular coordinates to polar coordinates where 

In Problems 5–7, convert the polar equation to a rectangular equation. Graph the equation by hand.

5. 6. 7.

In Problems 8–9, test each of the polar equations for symmetry with respect to the pole, the polar axis, and the line .

8. 9.

In Problems 10–12, perform the given operation, given and Write your answer in
polar form.

10. 11. 12.

13. Find all the cube roots of Write all answers in the form and then plot them in rectangular coordinates.

In Problems 14–18, and 

14. Find the position vector equal to 15. Find  

16. Find the unit vector in the direction of . 17. Find the angle between and i.

18. Decompose into its vertical and horizontal components.

In Problems 19–22, v1 = 84, 69, v2 = 8-3, -69, v3 = 8-8, 49, v4 = 810, 159.
v

vv

7v 7 .P1 P2 
!

.v

P2 = A822, 222 B .P1 = A322, 722 B
a + bi-8 + 823i.

w5w
z

z # w

w = 3 1cos 22° + i sin 22°2.z = 2 1cos 85° + i sin 85°2
r = 5 sin u cos2 ur2 cos u = 5

u =

p

2

r sin2 u + 8 sin u = rtan u = 3r = 7

r 7 0 and 0 … u 6 2p.1r, u2,A2, 223 B
a -4, 

p

3
ba3, -  

p

6
ba2, 

3p
4
b

Chapter Test

111. Static Equilibrium A weight of 2000 pounds is suspended
from two cables as shown in the figure. What are the ten-
sions in each cable?

40° 30°

2000
pounds

112. Actual Speed and Distance of a Motorboat A small mo-
torboat is moving at a true speed of 11 miles per hour in a
southerly direction. The current is known to be from the
northeast at 3 miles per hour. What is the speed of the mo-
torboat relative to the water? In what direction does the
compass indicate that the boat is headed?

113. Computing Work Find the work done by a force of 5
pounds acting in the direction 60° to the horizontal in mov-
ing an object 20 feet from to 120, 02.10, 02

19. Find the vector v1 + 2v2 - v3 20. Which two vectors are parallel?

21. Which two vectors are orthogonal? 22. Find the angle between vectors and v2 .v1

In Problems 23–25, use the vectors .u = 2i - 3j + k  and  v = - i + 3j + 2k

23. Find .u * v 24. Find the direction angles for .u

25. Find the area of the parallelgram that has  and as adja-
cent sides.

vu 26. A 1200 pound chandelier is to be suspended over a large
ballroom; the chandelier will be hung on a cable whose ends
will be attached to the ceiling, 16 feet apart. The chandelier
will be free hanging so that the ends of the cable will make
equal angles with the ceiling. If the top of the chandelier is
to be 16 feet from the ceiling, what is the minimum tension
the cable must be able to endure?
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Chapter Projects

1. Mandelbrot Sets
(a) Draw a complex plane and plot the points 

and 
(b) Consider the expression where z is some

complex number (called the seed) and Compute
and

for the following seeds:

and z6 = 1 + 1i.z5 = 0 - 1.3i,
z4 = -1.1 + 0.1i,z3 = -0.9 + 0.7i,z2 = 0.5 + 0.8i,

z1 = 0.1 - 0.4i,a6

a1 1=a0
2

+ z2, a2 1=a1
2

+ z2, a3 1=a2
2

+ z2, a4 , a5

a0 = z.
an = 1an - 122 + z,

z4 = -2.z2 = -2 + i, z3 = 0 - 2i,
z1 = 3 + 4i,

(c) The dark portion of the graph represents the set of all
values that are in the Mandelbrot set. De-
termine which complex numbers in part (b) are in this
set by plotting them on the graph. Do the complex
numbers that are not in the Mandelbrot set have any
common characteristics regarding the values of 
found in part (b)?

(d) Compute for each of the complex
numbers in part (b). Now compute for each of the
complex numbers in part (b). For which complex
numbers is and Conclude that the
criterion for a complex number to be in the Mandel-
brot set is that and 

–2

–1

y
1

Imaginary axis

x1

Real axis

ƒz ƒ 7 2.ƒan ƒ Ú ƒz ƒ

ƒz ƒ 7 2?ƒa6 ƒ Ú ƒz ƒ

ƒa6 ƒ

ƒz ƒ = 3x2
+ y2

a6

z = x + yi

Cumulative Review

1. Find the real solutions, if any, of the equation 
2. Find an equation for the line containing the origin that

makes an angle of 30° with the positive x-axis.
3. Find an equation for the circle with center at the point 

and radius 3. Graph this circle.
4. What is the domain of the function 

5. Test the equation for symmetry with respect
to the x-axis, the y-axis, and the origin.

6. Graph the function y = ƒ ln x ƒ .

x2
+ y3

= 2x4

f1x2 = ln11 - 2x2?
10, 12

ex2
- 9

= 1. 7. Graph the function 

8. Graph the function 

9. Find the exact value of 

10. Graph the equations and on the same set of
rectangular coordinates.

11. Graph the equations and on the same set of
polar coordinates.

u =

p

3
r = 2

y = 4x = 3

sin-1a -  
1
2
b .

y = sin ƒx ƒ .

y = ƒsin x ƒ .

The following projects are available at the Instructor’s Resource Center (IRC):

2. Project at Motorola Signal Fades Due to Interference?

3. Compound Interest
4. Complex Equations

SULLMC08_3pp_571-650  2/18/05  12:49 PM  Page 650


