Reference

Properties

Properties of Equality

Addition Property of Equality
If $a=b$, then $a+c=b+c$.
Multiplication Property of Equality
If $a=b$, then $a \cdot c=b \cdot c, c \neq 0$.

Reflexive Property of Equality
$a=a$
Transitive Property of Equality
If $a=b$ and $b=c$, then $a=c$.

Subtraction Property of Equality If $a=b$, then $a-c=b-c$.

Division Property of Equality
If $a=b$, then $\frac{a}{c}=\frac{b}{c}, c \neq 0$.
Symmetric Property of Equality If $a=b$, then $b=a$.

Substitution Property of Equality

If $a=b$, then a can be substituted for b (or b for a) in any equation or expression.

Properties of Segment and Angle Congruence

Reflexive Property of Congruence

For any segment $A B, \overline{A B} \cong \overline{A B}$.
Symmetric Property of Congruence
If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
Transitive Property of Congruence
If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$.

Other Properties

Transitive Property of Parallel Lines If $p \| q$ and $q \| r$, then $p \| r$.

Distributive Property

Sum
$a(b+c)=a b+a c$
Difference
$a(b-c)=a b-a c$

Triangle Inequalities

Triangle Inequality Theorem

$A B+B C>A C$
$A C+B C>A B$
$A B+A C>B C$

For any angle $A, \angle A \cong \angle A$.

If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Pythagorean Inequalities Theorem

If $c^{2}<a^{2}+b^{2}$, then $\triangle A B C$ is acute.

If $c^{2}>a^{2}+b^{2}$, then $\triangle A B C$ is obtuse.

Formulas

Coordinate Geometry

Slope

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Standard form of a linear equation
$A x+B y=C$
Midpoint Formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Polygons

Triangle Sum Theorem

$m \angle A+m \angle B+m \angle C=180^{\circ}$

Triangle Midsegment Theorem

$\overline{D E} \| \overline{A C}, D E=\frac{1}{2} A C$
Polygon Interior Angles Theorem

$m \angle 1+m \angle 2+\cdots+m \angle n=(n-2) \cdot 180^{\circ}$

Geometric Mean (Altitude) Theorem

$C D^{2}=A D \cdot B D$

Slope-intercept form
$y=m x+b$

Point-slope form

$y-y_{1}=m\left(x-x_{1}\right)$

Standard equation of a circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$, with center (h, k) and radius r

Distance Formula

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Exterior Angle Theorem

$$
m \angle 1=m \angle A+m \angle B
$$

Trapezoid Midsegment Theorem

$$
\overline{M N}\|\overline{A B}, \overline{M N}\| \overline{D C}, M N=\frac{1}{2}(A B+C D)
$$

Polygon Exterior Angles Theorem

$$
m \angle 1+m \angle 2+\cdots+m \angle n=360^{\circ}
$$

Geometric Mean (Leg) Theorem

$C B^{2}=D B \cdot A B \quad A C^{2}=A D \cdot A B$

$$
A C^{2}=A D \cdot A B
$$

Right Triangles

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

hypotenuse $=\operatorname{leg} \cdot \sqrt{2}$
$\cos A=\frac{A C}{A B}$
$\cos ^{-1} \frac{A C}{A B}=m \angle A$

$$
\begin{aligned}
& \sin A=\frac{B C}{A B} \\
& \sin ^{-1} \frac{B C}{A B}=m \angle A
\end{aligned}
$$

$$
\cos ^{-1} \frac{A C}{A B}=m \angle A
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

hypotenuse $=$ shorter leg $\cdot 2$
longer leg $=$ shorter leg $\cdot \sqrt{3}$

$$
\begin{aligned}
& \tan A=\frac{B C}{A C} \\
& \tan ^{-1} \frac{B C}{A C}=m \angle A
\end{aligned}
$$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Circles

Arc length

Arc length of $\overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r$

Central angles

Inscribed angles

$m \angle A C B=m \overparen{A B}$

Area of a sector

Area of sector $A P B=\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2}$

Tangent and intersected chord

$$
\begin{aligned}
& m \angle 1=\frac{1}{2} m \overparen{A B} \\
& m \angle 2=\frac{1}{2} m \overparen{B C A}
\end{aligned}
$$

Angles and Segments of Circles

Two chords

$m \angle 1=\frac{1}{2}(m \overparen{A C}+m \overparen{D B})$
$E A \cdot E B=E C \cdot E D$

Two secants

$m \angle 1=\frac{1}{2}(m \overparen{B D}-m \overparen{A C})$
$E A \cdot E B=E C \cdot E D$

Tangent and secant

Two tangents

$m \angle 1=\frac{1}{2}(m \overparen{A D}-m \overparen{A C})$
$m \angle 1=\frac{1}{2}(m \widehat{A C B}-m \overparen{A B})$
$E A^{2}=E C \cdot E D$
$E A=E B$

Probability and Combinatorics

Theoretical Probability $=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}$
Probability of the complement of an event
$P(\bar{A})=1-P(A)$

Probability of dependent events
$P(A$ and $B)=P(A) \cdot P(B \mid A)$

Permutations

${ }_{n} P_{r}=\frac{n!}{(n-r)!}$

Combinations

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

Experimental Probability $=\frac{\text { Number of successes }}{\text { Number of trials }}$
Probability of independent events
$P(A$ and $B)=P(A) \cdot P(B)$
Probability of compound events
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Binomial experiments

$$
P(k \text { successes })={ }_{n} C_{k} p^{k}(1-p)^{n-k}
$$

Perimeter, Area, and Volume Formulas

Square

$P=4 s$
$A=s^{2}$

Circle

$C=\pi d$ or $C=2 \pi r$
$A=\pi r^{2}$

Rhombus/Kite

$A=\frac{1}{2} d_{1} d_{2}$

Prism

$L=P h$
$S=2 B+P h$
$V=B h$

Rectangle

$P=2 \ell+2 w$
$A=\ell w$

Parallelogram

$A=b h$

Triangle

$P=a+b+c$
$A=\frac{1}{2} b h$

Trapezoid

$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

Regular \boldsymbol{n}-gon

$$
A=\frac{1}{2} a P \text { or } A=\frac{1}{2} a \cdot n s
$$

Cylinder

$L=2 \pi r h$
$S=2 \pi r^{2}+2 \pi r h$
$V=\pi r^{2} h$

Pyramid

$$
\begin{aligned}
& L=\frac{1}{2} P \ell \\
& S=B+\frac{1}{2} P \ell \\
& V=\frac{1}{3} B h
\end{aligned}
$$

Sphere

Cone

$$
\begin{aligned}
& L=\pi r \ell \\
& S=\pi r^{2}+\pi r \ell \\
& V=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Other Formulas

Geometric mean
$x=\sqrt{a \cdot b}$

Quadratic Formula

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$,
where $a \neq 0$ and $b^{2}-4 a c \geq 0$

Similar polygons or similar solids with scale factor $\boldsymbol{a}: \boldsymbol{b}$
Ratio of perimeters $=a: b$
Ratio of areas $=a^{2}: b^{2}$
Ratio of volumes $=a^{3}: b^{3}$

Conversions

U.S. Customary
1 foot $=12$ inches
1 yard $=3$ feet
1 mile $=5280$ feet
1 mile $=1760$ yards
1 acre $=43,560$ square feet
1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon $=4$ quarts
1 gallon $=231$ cubic inches
1 pound $=16$ ounces
1 ton $=2000$ pounds

U.S. Customary to Metric

1 inch $=2.54$ centimeters
1 foot ≈ 0.3 meter
1 mile ≈ 1.61 kilometers
1 quart ≈ 0.95 liter
1 gallon ≈ 3.79 liters
1 cup ≈ 237 milliliters
1 pound ≈ 0.45 kilogram
1 ounce ≈ 28.3 grams
1 gallon ≈ 3785 cubic centimeters

Density

Density $=\frac{\text { Mass }}{\text { Volume }}$

Time

1 minute $=60$ seconds
1 hour $=60$ minutes
1 hour $=3600$ seconds
1 year $=52$ weeks

Temperature

$C=\frac{5}{9}(F-32)$
$F=\frac{9}{5} C+32$

Metric

1 centimeter $=10$ millimeters
1 meter $=100$ centimeters
1 kilometer $=1000$ meters
1 liter $=1000$ milliliters
1 kiloliter $=1000$ liters
1 milliliter $=1$ cubic centimeter
1 liter $=1000$ cubic centimeters
1 cubic millimeter $=0.001$ milliliter
1 gram $=1000$ milligrams
1 kilogram $=1000$ grams

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch
1 meter ≈ 3.28 feet
1 meter ≈ 39.37 inches
1 kilometer ≈ 0.62 mile
1 liter ≈ 1.06 quarts
1 liter ≈ 0.26 gallon
1 kilogram ≈ 2.2 pounds
1 gram ≈ 0.035 ounce
1 cubic meter ≈ 264 gallons

