Reference

Properties

Properties of Equality

Addition Property of Equality If a = b, then a + c = b + c.

Multiplication Property of Equality If a = b, then $a \cdot c = b \cdot c$, $c \neq 0$.

Reflexive Property of Equality a = a

Transitive Property of Equality If a = b and b = c, then a = c. Subtraction Property of Equality If a = b, then a - c = b - c.

Division Property of Equality If a = b, then $\frac{a}{c} = \frac{b}{c}$, $c \neq 0$.

Symmetric Property of Equality If a = b, then b = a.

For any angle $A, \angle A \cong \angle A$.

If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

Substitution Property of Equality If a = b, then *a* can be substituted for *b* (or *b* for *a*) in any equation or expression.

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Properties of Segment and Angle Congruence

Reflexive Property of Congruence For any segment $AB, \overline{AB} \cong \overline{AB}$.

Symmetric Property of Congruence If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

Transitive Property of Congruence If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Other Properties

Transitive Property of Parallel Lines If $p \parallel q$ and $q \parallel r$, then $p \parallel r$.

Distributive Property

Sum a(b + c) = ab + acDifference

a(b-c) = ab - ac

Triangle Inequalities

Triangle Inequality Theorem

AB + BC > ACAC + BC > ABAB + AC > BC

Pythagorean Inequalities Theorem

AbC a B

If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

 $\triangle ABC$ is obtuse.

Formulas

Coordinate Geometry

Slope

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Standard form of a linear equation Ax + By = C

Midpoint Formula

 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Polygons

Triangle Sum Theorem

 $m \angle A + m \angle B + m \angle C = 180^{\circ}$

Triangle Midsegment Theorem

Polygon Interior Angles Theorem

 $m \angle 1 + m \angle 2 + \dots + m \angle n = (n-2) \cdot 180^{\circ}$

Geometric Mean (Altitude) Theorem

 $CD^2 = AD \bullet BD$

Slope-intercept form y = mx + b

Point-slope form $y - y_1 = m(x - x_1)$

Standard equation of a circle $(x - h)^2 + (y - k)^2 = r^2$, with center (h, k) and radius r

Distance Formula
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Exterior Angle Theorem

 $m \angle 1 = m \angle A + m \angle B$

Trapezoid Midsegment Theorem

 $\overline{MN} \| \overline{AB}, \overline{MN} \| \overline{DC}, MN = \frac{1}{2}(AB + CD)$

Polygon Exterior Angles Theorem

 $m \angle 1 + m \angle 2 + \dots + m \angle n = 360^{\circ}$

Geometric Mean (Leg) Theorem

Right Triangles

Pythagorean Theorem

Trigonometry

$$b^2 + b^2 = c^2$$

45°-45°-90° Triangles

30°-60°-90° Triangles

hypotenuse = shorter leg $\cdot 2$ longer leg = shorter leg • $\sqrt{3}$

Ratios

Conversion between degrees and radians

R

 $180^\circ = \pi$ radians

Sine and cosine of complementary angles

Let *A* and *B* be complementary angles. Then the following statements are true.

 $\sin A = \cos(90^\circ - A) = \cos B$ $\sin B = \cos(90^\circ - B) = \cos A$ $\cos A = \sin(90^\circ - A) = \sin B$ $\cos B = \sin(90^\circ - B) = \sin A$

Any Triangle

Area

Area = $\frac{1}{2}bc\sin A$ Area = $\frac{1}{2}ac\sin B$ Area = $\frac{1}{2}ab\sin C$

a	
b	(
	a b

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of Cosines

 $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac\cos B$ $c^2 = a^2 + b^2 - 2ab\cos C$

Circles

Arc length

Arc length of $\widehat{AB} = \frac{m\widehat{AB}}{360^{\circ}} \cdot 2\pi r$

Central angles

 $m \angle ACB = m \widehat{AB}$

Inscribed angles

Area of a sector

Area of sector $APB = \frac{m\widehat{AB}}{360^{\circ}} \cdot \pi r^2$

Tangent and intersected chord

Angles and Segments of Circles

Probability and Combinatorics

Theoretical Probability = $\frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$	Experimental Probability = $\frac{\text{Number of successes}}{\text{Number of trials}}$
Probability of the complement of an event $P(\overline{A}) = 1 - P(A)$	Probability of independent events $P(A \text{ and } B) = P(A) \bullet P(B)$
Probability of dependent events $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$	Probability of compound events P(A or B) = P(A) + P(B) - P(A and B)

Permutations $_{n}P_{r} = \frac{n!}{(n-r)!}$

Combinations ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$ **Binomial experiments**

 $P(k \text{ successes}) = {}_{n}C_{k}p^{k}(1-p)^{n-k}$

Perimeter, Area, and Volume Formulas

Square

P = 4s $A = s^2$

Circle

 $C = \pi d \text{ or } C = 2\pi r$ $A = \pi r^2$

Rhombus/Kite

L = PhS = 2B + PhV = Bh

Cone

Parallelogram

A = bh

Triangle

P = a + b + c $A = \frac{1}{2}bh$

Trapezoid

Regular n-gon

$$A = \frac{1}{2}aP$$
 or $A = \frac{1}{2}a \cdot ns$

Cylinder

 $L = 2\pi rh$ $S = 2\pi r^2 + 2\pi rh$ $V = \pi r^2 h$

 $S = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$

Other Formulas

Geometric mean

 $x = \sqrt{a \cdot b}$

Quadratic Formula

Density

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$ where $a \neq 0$ and $b^2 - 4ac \ge 0$

Density = $\frac{\text{Mass}}{\text{Volume}}$

Similar polygons or similar solids with scale factor *a* : *b*

Ratio of perimeters = a : bRatio of areas $= a^2 : b^2$ Ratio of volumes $= a^3 : b^3$

Conversions

U.S. Customary

1 foot = 12 inches 1 yard = 3 feet 1 mile = 5280 feet 1 mile = 1760 yards 1 acre = 43,560 square feet 1 cup = 8 fluid ounces 1 pint = 2 cups 1 quart = 2 pints 1 gallon = 4 quarts 1 gallon = 231 cubic inches 1 pound = 16 ounces 1 ton = 2000 pounds

Metric

centimeter = 10 millimeters
meter = 100 centimeters
kilometer = 1000 meters
liter = 1000 milliliters
kiloliter = 1000 liters
milliliter = 1 cubic centimeter
liter = 1000 cubic centimeters
cubic millimeter = 0.001 milliliter
gram = 1000 milligrams
kilogram = 1000 grams

U.S. Customary to Metric 1 inch = 2.54 centimeters 1 foot \approx 0.3 meter 1 mile \approx 1.61 kilometers 1 quart \approx 0.95 liter 1 gallon \approx 3.79 liters 1 cup \approx 237 milliliters 1 pound \approx 0.45 kilogram 1 ounce \approx 28.3 grams 1 gallon \approx 3785 cubic centimeters

Time

1 minute = 60 seconds 1 hour = 60 minutes 1 hour = 3600 seconds 1 year = 52 weeks

Temperature

$$C = \frac{5}{9}(F - 32)$$

F = $\frac{9}{5}C + 32$

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch 1 meter ≈ 3.28 feet 1 meter ≈ 39.37 inches 1 kilometer ≈ 0.62 mile 1 liter ≈ 1.06 quarts 1 liter ≈ 0.26 gallon 1 kilogram ≈ 2.2 pounds 1 gram ≈ 0.035 ounce 1 cubic meter ≈ 264 gallons